Near-Rings and Near-Fields
Springer (Verlag)
978-94-010-4160-7 (ISBN)
Audience: Graduate students of mathematics and algebraists interested in near-ring theory.
On the Beginnings and Development of Near-Ring Theory.- Localized Distributivity Conditions.- Endomorphism Near-Rings Through the Ages.- On Regular Near-Ring Modules.- Does R Prime Imply MR(R2) is Simple?.- Essential Nilpotency in Near-Rings.- Completely Prime Ideals and Radicals in Near-Rings.- Connecting Seminearrings to Probability Generating Functions.- Nilpotency and Solvability in Categories.- Centralizer Near-Rings Determined by End G.- On codes from Residue Class Ring Generated Finite Ferrero Pairs.- On Minimal Varieties of Near-Rings.- Syntactic Nearrings.- On Sufficient Conditions for Near-Rings to be Isomorphic.- Simplicity of Some Nonzero-Symmetric Centralizer Near-Rings.- Characterization of Some Finite Ferrero Pairs.- On Planar Local Nearrings and Bacon Spreads.- Construction of Finite Loops of Even Order.- N-Homomorphisms of Topological N-Groups.- The Bicentralizer Nearrings of R.- When is MA(G) a Ring?.- Anshel-Clay Near-Rings and Semiaffine Parallelogramspaces.- On Semi-Endomorphal Modules Over Ore Domains.- Subideals and Normality of Near-Ring Modules.- Endomorphism Nearrings on Finite Groups, a Report.- On the Structure Of Certain 2-Tame Near-Rings.- Rings Which are a Homomorphic Image of a Centralizer Near-Ring.- Homogeneous Maps of Free Ring Modules.- A decoding Strategy for Equal Weight Codes from Ferrero Pairs.
Reihe/Serie | Mathematics and Its Applications ; 336 | Mathematics and Its Applications ; 336 |
---|---|
Zusatzinfo | IX, 278 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 160 x 240 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
ISBN-10 | 94-010-4160-1 / 9401041601 |
ISBN-13 | 978-94-010-4160-7 / 9789401041607 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich