Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Advances in Large-Margin Classifiers -

Advances in Large-Margin Classifiers

Buch | Hardcover
422 Seiten
2000
Bradford Books (Verlag)
978-0-262-19448-8 (ISBN)
CHF 13,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research.

The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification-that is, a scale parameter-rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

Alexander J. Smola is Senior Principal Researcher and Machine Learning Program Leader at National ICT Australia/Australian National University, Canberra. Bernhard Schoelkopf is Director at the Max Planck Institute for Intelligent Systems in Tubingen, Germany. He is coauthor of Learning with Kernels (2002) and is a coeditor of Advances in Kernel Methods: Support Vector Learning (1998), Advances in Large-Margin Classifiers (2000), and Kernel Methods in Computational Biology (2004), all published by the MIT Press.

Reihe/Serie Neural Information Processing series
Verlagsort Massachusetts
Sprache englisch
Maße 203 x 254 mm
Gewicht 1202 g
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 0-262-19448-1 / 0262194481
ISBN-13 978-0-262-19448-8 / 9780262194488
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15