Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Waves in Metamaterials - Laszlo Solymar, Ekaterina Shamonina

Waves in Metamaterials

Buch | Softcover
416 Seiten
2014
Oxford University Press (Verlag)
978-0-19-870501-7 (ISBN)
CHF 92,95 inkl. MwSt
Metamaterials is a subject born in the 21st century. It is concerned with artificial materials which can have electrical and magnetic properties difficult or impossible to find in nature. The mathematics of the book is within the power of final year undergraduates: the aim is to explain the physics in simple terms and enumerate the major advances.
Metamaterials is a young subject born in the 21st century. It is concerned with artificial materials which can have electrical and magnetic properties difficult or impossible to find in nature. The building blocks in most cases are resonant elements much smaller than the wavelength of the electromagnetic wave. The book offers a comprehensive treatment of all aspects of research in this field at a level that should appeal to final year undergraduates in physics or in electrical and electronic engineering. The mathematics is kept at a minimum; the aim is to explain the physics in simple terms and enumerate the major advances. It can be profitably read by graduate and post-graduate students in order to find out what has been done in the field outside their speciality, and by experts who may gain new insight about the inter-relationship of the physical phenomena involved.

Laszlo Solymar was born in 1930 in Budapest. He is Emeritus Professor of Applied Electromagnetism at the University of Oxford and Visiting Professor and Senior Research Fellow at Imperial College, London. He graduated from the Technical University of Budapest in 1952 and received the equivalent of a Ph.D in 1956 from the Hungarian Academy of Sciences. In 1956 he settled in England where he worked first in industry and later at the University of Oxford. He did research on antennas, microwaves, superconductors, holographic gratings, photorefractive materials, and metamaterials. He has held visiting professorships at the Universities of Paris, Copenhagen, Osnabrück, Berlin, Madrid and Budapest. He published 8 books and over 250 papers. He has been a Fellow of the Royal Society since 1995. He received the Faraday Medal of the Institution of Electrical Engineers in 1992. Ekaterina Shamonina was born in 1970 in Tver, Russia. She is Professor of Engineering Science at the University of Oxford. She graduated in 1993 in Physics at the Moscow State University and received her doctorate in 1998 from the University of Osnabrück, Germany. In 2000 she was awarded the Emmy Noether Fellowship from the German Research Council. She spent the first leg of the fellowship (20002002) at the University of Oxford. After a further six months at Imperial College, London she returned to the University of Osnabrück where she built up a research group working on Metamaterials. She completed her habilitation in Theoretical Physics in 2006, was appointed a Professor in Advanced Optical Technologies at the University of Erlangen-Nürnberg (20082011) and a Leverhulme Reader in Metamaterials at Imperial College London (20112013). Her main research areas apart from metamaterials have been amorphous semiconductors, photorefractive materials, antennas and plasmonics.

1. Basic concepts and basic equations ; 2. A bird's-eye view of metamaterials ; 3. Plasmon-polaritons ; 4. Small resonators ; 5. Subwavelength imaging ; 6. Phenomena in waveguides ; 7. Magnetoinductive waves I ; 8. Magnetoinductive waves II ; 9. Seven topics in search of a chapter ; 10. A historical review ; Appendix A: Acronyms ; Appendix B: Field at the centre of a cubical lattice of identical dipoles ; Appendix C: Derivation of material parameters from reflection and transmission coefficients ; Appendix D: How does surface charge appear in the boundary conditions? ; Appendix E: The Brewster wave ; Appendix F: The electrostatic limit ; Appendix G: Alternative derivation of the dispersion equation for SPPs for a dielectric-metal-dielectric structure: presence of a surface charge ; Appendix H: Electric dipole moment induced by a magnetic field perpendicular to the plane of the SRR ; Appendix I: Average dielectric constants of a multilayer structure ; Appendix J: Derivation of mutual inductance between two magnetic dipoles in the presence of retardation

Erscheint lt. Verlag 24.4.2014
Zusatzinfo 16pp colour plates, 191 b/w line drawings, 89 b/w halftones
Verlagsort Oxford
Sprache englisch
Maße 190 x 247 mm
Gewicht 932 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften Physik / Astronomie Elektrodynamik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-19-870501-8 / 0198705018
ISBN-13 978-0-19-870501-7 / 9780198705017
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95