Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Nonparametric Statistical Methods Using R - John Kloke, Joseph W. McKean

Nonparametric Statistical Methods Using R

Buch | Hardcover
288 Seiten
2014
Chapman & Hall/CRC (Verlag)
978-1-4398-7343-4 (ISBN)
CHF 148,35 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
A Practical Guide to Implementing Nonparametric and Rank-Based Procedures

Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm.

The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data.

The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.

John Kloke is a biostatistician and assistant scientist at the University of Wisconsin–Madison. He has held faculty positions at the University of Pittsburgh, Bucknell University, and Pomona College. An R user for more than 15 years, he is an author and maintainer of numerous R packages, including Rfit and npsm. He has published papers on nonparametric rank-based estimation, including analysis of cluster correlated data. Joseph W. McKean is a professor of statistics at Western Michigan University. He has published many papers on nonparametric and robust statistical procedures and has co-authored several books, including Robust Nonparametric Statistical Methods and Introduction to Mathematical Statistics. He is an associate editor of several statistics journals and a fellow of the American Statistical Association.

Getting Started with R, Basic Statistics. Two-Sample Problems. Regression I. ANOVA and ANCOVA. Time-to-Event Analysis. Regression II. Cluster Correlated Data. Bibliography. Index.

Reihe/Serie Chapman & Hall/CRC Texts in Statistical Science
Zusatzinfo 13 Tables, black and white; 58 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 460 g
Themenwelt Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
ISBN-10 1-4398-7343-7 / 1439873437
ISBN-13 978-1-4398-7343-4 / 9781439873434
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich