Algorithmic Learning Theory
Springer Berlin (Verlag)
978-3-540-42875-6 (ISBN)
Editors' Introduction.- Editors' Introduction.- Invited Papers.- The Discovery Science Project in Japan.- Queries Revisited.- Robot Baby 2001.- Discovering Mechanisms: A Computational Philosophy of Science Perspective.- Inventing Discovery Tools: Combining Information Visualization with Data Mining.- Complexity of Learning.- On Learning Correlated Boolean Functions Using Statistical Queries (Extended Abstract).- A Simpler Analysis of the Multi-way Branching Decision Tree Boosting Algorithm.- Minimizing the Quadratic Training Error of a Sigmoid Neuron Is Hard.- Support Vector Machines.- Learning of Boolean Functions Using Support Vector Machines.- A Random Sampling Technique for Training Support Vector Machines.- New Learning Models.- Learning Coherent Concepts.- Learning Intermediate Concepts.- Real-Valued Multiple-Instance Learning with Queries.- Online Learning.- Loss Functions, Complexities, and the Legendre Transformation.- Non-linear Inequalities between Predictive and Kolmogorov Complexities.- Inductive Inference.- Learning by Switching Type of Information.- Learning How to Separate.- Learning Languages in a Union.- On the Comparison of Inductive Inference Criteria for Uniform Learning of Finite Classes.- Refutable Inductive Inference.- Refutable Language Learning with a Neighbor System.- Learning Recursive Functions Refutably.- Refuting Learning Revisited.- Learning Structures and Languages.- Efficient Learning of Semi-structured Data from Queries.- Extending Elementary Formal Systems.- Learning Regular Languages Using RFSA.- Inference of ?-Languages from Prefixes.
Erscheint lt. Verlag | 7.11.2001 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XII, 388 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 558 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithm analysis and problem complexity • Algorithmic Learning • Algorithmic Learning Theory • algorithms • Complexity • Computational Learning • concept learning • Discovery Science • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Inductive Inference • learning • Learning Algorithms • Learning theory • machine learning • Neural Network Learning • Statistical Learning • Support Vector Machine • Support Vector Machines |
ISBN-10 | 3-540-42875-5 / 3540428755 |
ISBN-13 | 978-3-540-42875-6 / 9783540428756 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich