Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Twisted L-Functions and Monodromy (eBook)

eBook Download: PDF
2009
264 Seiten
Princeton University Press (Verlag)
978-1-4008-2488-5 (ISBN)

Lese- und Medienproben

Twisted L-Functions and Monodromy - Nicholas M. Katz
356,95 € (CHF 348,70)
Systemvoraussetzungen
109,99 € (CHF 107,45)
Systemvoraussetzungen
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen


Nicholas M. Katz is Professor of Mathematics at Princeton University. He is the author of four other books in this series: Arithmetic Moduli of Elliptic Curves (with Barry Mazur); Gauss Sums, Kloosterman Sums, and Monodromy Groups; Exponential Sums and Differential Equations; and Rigid Local Systems.
For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the function field case (with a growing constant field). The monodromy-theoretic methods he develops turn out to apply, still in the function field case, equally well to families of big twists of objects of all sorts, not just to elliptic curves. The leisurely, lucid introduction gives the reader a clear picture of what is known and what is unknown at present, and situates the problems solved in this book within the broader context of the overall study of elliptic curves. The book's technical core makes use of, and explains, various advanced topics ranging from recent results in finite group theory to the machinery of l-adic cohomology and monodromy. Twisted L-Functions and Monodromy is essential reading for anyone interested in number theory and algebraic geometry.

Nicholas M. Katz is Professor of Mathematics at Princeton University. He is the author of four other books in this series: Arithmetic Moduli of Elliptic Curves (with Barry Mazur); Gauss Sums, Kloosterman Sums, and Monodromy Groups; Exponential Sums and Differential Equations; and Rigid Local Systems.

Erscheint lt. Verlag 10.1.2009
Reihe/Serie Annals of Mathematics Studies
Annals of Mathematics Studies
Verlagsort Princeton
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Technik
Schlagworte abelian variety • absolute continuity • Addition • Affine space • Algebraically closed field • Ambient space • average • Betti number • Birch and Swinnerton-Dyer conjecture • Blowing up • Codimension • coefficient • Computation • conjecture • conjugacy class • convolution • Critical Value • differential geometry of surfaces • Dimension • Dimension (vector space) • direct sum • Divisor • Divisor (algebraic geometry) • Eigenvalues and Eigenvectors • Elliptic Curve • Equation • Equidistribution theorem • existential quantification • Factorization • finite field • finite group • Finite set • Flat map • Fourier transform • functional equation • Function field • Goursat's lemma • Ground field • Group representation • hyperplane • hypersurface • Integer • Integer matrix • Irreducible component • irreducible polynomial • irreducible representation • J-invariant • K3 surface • Lebesgue measure • Lefschetz pencil • Level of Measurement • L-Function • Lie algebra • Limit superior and limit inferior • Minimal polynomial (field theory) • modular form • Monodromy • Morphism • Numerical analysis • orthogonal group • percentage • polynomial • Prime number • probability measure • quadratic function • Quantity • Quotient space (topology) • Representation Theory • residue field • Riemann hypothesis • Root of unity • Scalar (physics) • Set (mathematics) • Sheaf (mathematics) • SUBGROUP • Summation • Symmetric group • System of imprimitivity • Theorem • Trivial representation • Zariski topology
ISBN-10 1-4008-2488-5 / 1400824885
ISBN-13 978-1-4008-2488-5 / 9781400824885
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 733 KB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich