Advances in Learning Classifier Systems
Springer Berlin (Verlag)
978-3-540-42437-6 (ISBN)
Theory.- An Artificial Economy of Post Production Systems.- Simple Markov Models of the Genetic Algorithm in Classifier Systems: Accuracy-Based Fitness.- Simple Markov Models of the Genetic Algorithm in Classifier Systems: Multi-step Tasks.- Probability-Enhanced Predictions in the Anticipatory Classifier System.- YACS: Combining Dynamic Programming with Generalization in Classifier Systems.- A Self-Adaptive Classifier System.- What Makes a Problem Hard for XCS?.- Applications.- Applying a Learning Classifier System to Mining Explanatory and Predictive Models from a Large Clinical Database.- Strength and Money: An LCS Approach to Increasing Returns.- Using Classifier Systems as Adaptive Expert Systems for Control.- Mining Oblique Data with XCS.- Advanced Architectures.- A Study on the Evolution of Learning Classifier Systems.- Learning Classifier Systems Meet Multiagent Environments.- The Bibliography.- A Bigger Learning Classifier Systems Bibliography.- An Algorithmic Description of XCS.
Erscheint lt. Verlag | 29.8.2001 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | VIII, 280 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 408 g |
Themenwelt | Informatik ► Software Entwicklung ► User Interfaces (HCI) |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Adaptation • Algorithmic Learning • algorithms • classification • Classifier SYstems • Clustering • Data Analysis • Data Mining • Evolutionary Computing • Expert System • Genetic algorithms • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • learning • Learning classifier systems • Multiagent Learning • Rule-Based Systems |
ISBN-10 | 3-540-42437-7 / 3540424377 |
ISBN-13 | 978-3-540-42437-6 / 9783540424376 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich