Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Functional Networks with Applications - Enrique Castillo, Angel Cobo, Jose Antonio Gutierrez, Rosa Eva Pruneda

Functional Networks with Applications

A Neural-Based Paradigm
Buch | Softcover
309 Seiten
2013
Springer-Verlag New York Inc.
978-1-4613-7562-3 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected.
Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net­ works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ­ ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.

I Neural Networks.- 1 Introduction to Neural Networks.- II Functional Networks.- 2 Introduction to Functional Networks.- 3 Functional Equations.- 4 Some Functional Network Models.- 5 Model Selection.- III Applications.- 6 Applications to Time Series.- 7 Applications to Differential Equations.- 8 Applications to CAD.- 9 Applications to Regression.- IV Computer Programs.- 10 Mathematica Programs.- 11 A Java Applet.- Notation.- References.

Reihe/Serie The Springer International Series in Engineering and Computer Science ; 473
Zusatzinfo XI, 309 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Informatik Weitere Themen CAD-Programme
Naturwissenschaften Physik / Astronomie Theoretische Physik
Naturwissenschaften Physik / Astronomie Thermodynamik
ISBN-10 1-4613-7562-2 / 1461375622
ISBN-13 978-1-4613-7562-3 / 9781461375623
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15