The Elements of Cantor Sets (eBook)
256 Seiten
John Wiley & Sons (Verlag)
978-1-118-40743-1 (ISBN)
applications to various branches of mathematics
The Elements of Cantor Sets: With Applications features a
thorough introduction to Cantor Sets and applies these sets as a
bridge between real analysis, probability, topology, and
algebra.
The author fills a gap in the current literature by providing an
introductory and integrated perspective, thereby preparing readers
for further study and building a deeper understanding of analysis,
topology, set theory, number theory, and algebra.
The Elements of Cantor Sets provides coverage of:
* Basic definitions and background theorems as well as
comprehensive mathematical details
* A biography of Georg Ferdinand Ludwig Philipp Cantor, one of
the most significant mathematicians of the last century
* Chapter coverage of fractals and self-similar sets, sums of
Cantor Sets, the role of Cantor Sets in creating pathological
functions, p-adic numbers, and several generalizations of
Cantor Sets
* A wide spectrum of topics from measure theory to the Monty Hall
Problem
An ideal text for courses in real analysis, topology, algebra,
and set theory for undergraduate and graduate-level courses within
mathematics, computer science, engineering, and physics
departments, The Elements of Cantor Sets is also appropriate
as a useful reference for researchers and secondary mathematics
education majors.
ROBERT W. VALLIN, PhD, is Professor of Mathematics at Slippery Rock University. The recipient of numerous grants and awards, Dr. Vallin is also the author of over forty journal articles and has given many undergraduate and research talks on a variety of topics.
Foreword xiii
Preface xv
Acknowledgments xvii
Introduction xix
1 A Quick Biography of Cantor 1
2 Basics 5
2.1 Review 5
Exercises 14
3 Introducing the Cantor Set 17
3.1 Some Definitions and Basics 17
3.2 Size of a Cantor Set 21
3.3 Large and Small 46
Exercises 48
4 Cantor Sets and Continued Fractions 51
4.1 Introducing Continued Fractions 52
4.2 Constructing a Cantor Set 59
4.3 Diophantine Equations 60
4.4 Miscellaneous 63
Exercises 65
5 p-adic Numbers and Valuations 67
5.1 Some Abstract Algebra 67
5.2 p-adic Numbers 72
5.3 p-adic Integers and Cantor Sets 80
5.4 p-adic Rational Numbers 82
Exercises 88
6 Self-Similar Objects 91
6.1 The Meaning of Self-Similar 91
6.2 Metric Spaces 92
6.3 Sequences in (S; d) 97
6.4 Affine Transformations 106
6.5 An Application for an IFS 112
Exercises 115
7 Various Notions of Dimension 117
7.1 Limit Supremum and Limit Infimum 117
7.2 Topological Dimension 121
7.3 Similarity Dimension 125
7.4 Box-Counting Dimension 126
7.5 Hausdorff Measure and Dimension 129
7.6 Miscellaneous Notions of Dimension 134
Exercises 138
8 Porosity and Thickness Looking
at the Gaps 141
8.1 The Porosity of a Set 141
8.2 Symmetric Sets and Symmetric Porosity 144
8.3 A New and Different Definition of Cantor Set 147
8.4 Thickness of a Cantor Set 148
8.5 Applying Thickness 149
8.6 A Bit More on Thickness 151
8.7 Porosity in a Metric Space 152
Exercises 154
9 Creating Pathological Functions via C 155
9.1 Sequences of Functions 155
9.2 The Cantor Function 159
9.3 Space-Filling Curves 165
9.4 Baire Class One Functions 169
9.5 Darboux Functions 171
9.6 Linearly Continuous Functions 175
Exercises 178
10 Generalizations and Applications 179
10.1 Generalizing Cantor Sets 179
10.2 Fat Cantor Sets 183
10.3 Sums of Cantor Sets 184
10.4 Differences of Cantor Sets 191
10.5 Products of Cantor Sets 193
10.6 Cantor Target 195
10.7 Ana Sets 196
10.8 Average Distance 199
10.9 Non-Averaging Sets 201
10.10 Cantor Series and Cantor Sets 203
10.11 Liouville Numbers and Irrationality Exponents 205
10.12 Sets of Sums of Convergent Alternating Series 207
10.13 The Monty Hall Problem 209
11 Epilogue 215
References 217
"This book could be used as a text for an undergraduate survey course of higher mathematics. It is an excellent reference for a graduate student, researcher or university instructor." (American Mathematical Society, 1 March 2015)
"Summing Up: Recommended. Upper-division undergraduates through researchers/faculty." (Choice, 1 March 2014)
Erscheint lt. Verlag | 29.7.2013 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
Schlagworte | Analysis • Chaos / Fractal / Dynamical Systems • Chaos, Fraktale u. dynamische Systeme • Geometrie u. Topologie • Geometry & Topology • Mathematics • Mathematik • Real analysis • reelle Analysis |
ISBN-10 | 1-118-40743-1 / 1118407431 |
ISBN-13 | 978-1-118-40743-1 / 9781118407431 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 15,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 3,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich