Versicherungsmathematik
Springer Berlin (Verlag)
978-3-642-88630-0 (ISBN)
I. Zinstheorie.- Allgemeine Betrachtungen.- 1.1. Einmalige Zahlungen.- 1.2. Periodische Zahlungen.- 1.3. Sparversicherung.- II. Theorie der Personengesamtheiten.- und Problemstellung.- 2.1. Absterbeordnung.- 2.2. Berechnung der Absterbeordnung.- 2.3. Die wichtigsten Typen von Sterblichkeitstafeln und ihre Eigenschaften.- 2.4. Die Ausscheideordnungen.- 2.5. Aktivitätsordnung.- III. Die Leibrente und die Kapitalversicherungen auf ein Leben.- und Problemstellung.- 3.1. Barwerte von Erlebensfallversicherungen, Leibrenten und Terminversicherungen.- 3.2. Die unterjährig bezahlbare Leibrente.- 3.3. Kapitalversicherung auf den Todesfall und gemischte Versicherung.- 3.4. Veränderliche Renten und Versicherungssummen.- 3.5. Nettoprämien.- 3.6. Verwaltungskosten, ausreichende Prämie und Bruttoprämie.- 3.7. Prämienrückgewähr.- 3.8. Anwendung von Selektionstafeln.- IV. Versicherungen auf mehrere Leben.- und Problemstellung.- 4.1. Absterbeordnung von Paaren.- 4.2. Wichtigste Versicherungswerte für zwei verbundene Leben.- 4.3. Anwendung der Makehamschen Absterbeordnung bei der Berechnung der Verbindungsrente verbundener Leben.- V. Pensionsversicherung.- und Problemstellung.- 5.1. Aktivitätsrente.- 5.2. Invaliditätsversicherungsleistungen.- 5.3. Kombinierte Alters- und Invalidenrentenversicherung.- 5.4. Variation der Invaliditätswahrscheinlichkeiten bei der Berechnung des Barwertes anwartschaftlicher Invalidenrenten.- 5.5. Allgemeine Betrachtungen über die Witwenrentenversicherung.- 5.6. Der Barwert laufender Witwenrenten und Witwenabfindungen.- 5.7. Anwartschaftliche Witwenrente, berechnet gemäß der Individualmethode.- 5.8. Anwartschaftliche Witwenrente, berechnet nach der Kollektivmethode.- 5.9. Waisenrentenversicherung.- 5.10. Invalidenkinderrenten.- 5.11. Einlage,Netto- und Bruttoprämie bei Pensionsversicherungen, Prämienbefreiung im Invaliditätsfall.- VI. Prämienreserve (Deckungskapital).- und Problemstellung.- 6.1. Nettoprämienreserve, Spar- und Risikoprämie.- 6.2. Nettoprämienreserve für einige Versicherungsarten.- 6.3. Bilanzreserve, Bilanzdeckungskapital, Prämien- und Rentenübertrag.- 6.4. Berücksichtigung von Verwaltungskosten bei der Berechnung der Prämienreserve, Verwaltungskostenreserve und gezillmerte Reserve.- 6.5. Gruppenweise Berechnung der Prämienreserve.- 6.6. Berechnung der Prämienreserve mittels Interpolation.- 6.7. Kollektive Reserveberechnung.- 6.8. Umwandlungs- und Rückkaufswerte.- VII. Über allgemeine Variationsprobleme in der Versicherungsmathematik.- und Problemstellung.- 7.1. Allgemeine Variationsformeln.- 7.2. Das Invarianzproblem.- 7.3. Die Reservenvariation.- 7.4. Das Zinsfußproblem für einfache Versicherungen.- 7.5. Das Zinsfußproblem für Pensionsversicherungen.- 7.6. Einige versicherungsmathematische Vorzeichensätze.- VIII. Über die Konstruktion von Universaltafeln und ihre Anwendungen.- und Problemstellung.- 8.1. Kontinuierliche Darstellung der einfachsten Versicherungswerte.- 8.2. Über einfache Transformationen von Versicherungswerten.- 8.3. Die Makehamschen Absterbeordnungen als Gruppe.- IX. Versicherungstechnische Bilanzen, ihre Analyse und die Gewinnverteilung.- und Problemstellung.- 9.1. Versicherungstechnische Bilanzen.- 9.2. Analyse der Bilanzen und der Gewinn- und Verlustrechnung.- 9.3. Berechnung der Risikogewinne und Risikoverluste.- 9.4. Erfolgsberechnung von Versicherungsunternehmungen.- 9.5. Kontributionsformel.- 9.6. Dividendenpläne.- 9.7. Dividendenreserve.- X. Erneuerungstheorie.- und Problemstellung.- 10.1. Offene natürliche Gesamtheiten.- 10.2. Offeneeinfache Gesamtheiten.- 10.3. Offene allgemeine Gesamtheiten.- 10.4. Grenzwerte der Erneuerungszahlen.- 10.5. Konvergenzbetrachtungen.- XI. Über die Finanzierungssysteme für Sozialversicherungen.- und Problemstellung.- 11.1. Das kollektive Äquivalenzprinzip.- 11.2. Umlageverfahren.- 11.3. Eigenschaften des Umlageverfahrens.- 11.4. Kollektives Deckungskapitalverfahren.- 11.5. Prämiendurchschnittsverfahren für eine Generation.- 11.6. Allgemeines Prämiendurchschnittsverfahren. Bilanz einer offenen Versicherungseinrichtung.- Über den stochastischen Aufbau der Versicherungsmathematik. Einleitung und Problemstellung.- A.1. Über eine verallgemeinerte Absterbeordnung.- A.2. Stochastische Definitionen und Zusammenhänge mit der Todesfallversicherung.- A.3. Stochastische Begründung des Äquivalenzprinzipes.- Tabellen.- Tabelle 1a. Rohe einjährige Sterbenswahrscheinlichkeiten der Schweizer Bevölkerung, Männer 1939/44.- Tabelle 1b. Rohe einjährige Sterbenswahrscheinlichkeiten der Schweizer Bevölkerung, Frauen 1939/44.- Tabelle 2a. Ausgeglichene, einjährige Sterbenswahrscheinlichkeiten der Schweizer Bevölkerung, Männer 1939/44.- Tabelle 2b. Ausgeglichene, einjährige Sterbenswahrscheinlichkeiten der Schweizer Bevölkerung, Frauen 1939/44.- Tabelle 3. Sterbetafel Deutsches Reich, Männer 1924/26. Sterbenswahrscheinlichkeiten und Kommutationszahlen zum Zinsfuß von 3½%.- Tabelle 4. Verschiedene Invalidierungswahrscheinlichkeiten.- Tabelle 5. Sterbenswahrscheinlichkeiten für Männer und Frauen gemäß den technischen Grundlagen für die Eidg. Versicherungskasse, Bern 1950.- Tabelle 6a. Sterbenswahrscheinlichkeit für invalide Männer gemäß den technischen Grundlagen für Pensionsversicherungen, Städt. Versicherungskasse Zürich 1950.- Tabelle 6b.Sterbenswahrscheinlichkeit für invalide Frauen gemäß den technischen Grundlagen für Pensionsversicherungen, Städt. Versicherungskasse Zürich 1950.- Namen- und Sachverzeichnis.
Erscheint lt. Verlag | 1.7.2012 |
---|---|
Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
Zusatzinfo | X, 250 S. 1 Abb. |
Verlagsort | Berlin |
Sprache | deutsch |
Maße | 155 x 235 mm |
Gewicht | 399 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Wirtschaft ► Allgemeines / Lexika | |
Betriebswirtschaft / Management ► Spezielle Betriebswirtschaftslehre ► Versicherungsbetriebslehre | |
Wirtschaft ► Volkswirtschaftslehre | |
Schlagworte | Analysis • insurance • Integralrechnung • Mathematik • Quantitative Finance • Versicherung • Versicherungsmathematik • Wahrscheinlichkeit • Wahrscheinlichkeitsrechnung |
ISBN-10 | 3-642-88630-2 / 3642886302 |
ISBN-13 | 978-3-642-88630-0 / 9783642886300 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich