Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Geometric Computing with Clifford Algebras -

Geometric Computing with Clifford Algebras

Theoretical Foundations and Applications in Computer Vision and Robotics

Gerald Sommer (Herausgeber)

Buch | Hardcover
XVIII, 551 Seiten
2001 | 2001
Springer Berlin (Verlag)
978-3-540-41198-7 (ISBN)
CHF 249,95 inkl. MwSt
Clifford algebra, then called geometric algebra, was introduced more than a cenetury ago by William K. Clifford, building on work by Grassmann and Hamilton. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work outlines that Clifford algebra provides a universal and powerfull algebraic framework for an elegant and coherent representation of various problems occuring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This monograph-like anthology introduces the concepts and framework of Clifford algebra and provides computer scientists, engineers, physicists, and mathematicians with a rich source of examples of how to work with this formalism.

1. New Algebraic Tools for Classical Geometry.- 2. Generalized Homogeneous Coordinates for Computational Geometry.- 3. Spherical Conformai Geometry with Geometric Algebra.- 4. A Universal Model for Conformai Geometries of Euclidean, Spherical and Double-Hyperbolic Spaces.- 5. Geo-MAP Unification.- 6. Honing Geometric Algebra for Its Use in the Computer Sciences.- 7. Spatial-Color Clifford Algebras for Invariant Image Recognition.- 8. Non-commutative Hypercomplex Fourier Transforms of Multidimensional Signals.- 9. Commutative Hypercomplex Fourier Transforms of Multidimensional Signals.- 10. Fast Algorithms of Hypercomplex Fourier Transforms.- 11. Local Hypercomplex Signal Representations and Applications.- 12. Introduction to Neural Computation in Clifford Algebra.- 13. Clifford Algebra Multilayer Perceptrons.- 14. A Unified Description of Multiple View Geometry.- 15. 3D-Reconstruction from Vanishing Points.- 16. Analysis and Computation of the Intrinsic Camera Parameters.- 17. Coordinate-Free Projective Geometry for Computer Vision.- 18. The Geometry and Algebra of Kinematics.- 19. Kinematics of Robot Manipulators in the Motor Algebra.- 20. Using the Algebra of Dual Quaternions for Motion Alignment.- 21. The Motor Extended Kalman Filter for Dynamic Rigid Motion Estimation from Line Observations.- References.- Author Index.

From the reviews:

"This monograph-like anthology presents a collection of contributions concerning the problem of solving geometry related problems with suitable algebraic embeddings. It is not only directed at scientists who have already discovered the power of Clifford algebras ... but also at those scientists who are interested in Clifford algebras ... . Therefore, an effort is made to keep this book accessible to newcomers ... while still presenting up to date research and new developments. ... The 21 coherently written chapters cover all relevant issues ... ." (Vasily A. Chernecky, Mathematical Reviews, Issue 2003 m)

"This is a collection of contributions which describe the solution of geometry-related problems by suitable algebraic embeddings, especially into Clifford algebras. ... this book can serve as a reference to the state of the art concerning the use of Clifford algebras as a frame for geometric computing." (H. G. Feichtinger, Monatshefte für Mathematik, Vol. 140 (4), 2003)

"Clifford Algebras were introduced by W. K. Clifford in 1878. ... The book is a collection of 21 chapters/papers written by experts in the field. These 21 papers are coherently written and the book can be read almost like a monograph. ... The book is clearly written and well structured. It is recommended to mathematicians, physicists, computer scientists, engineers, and ... to graduate students." (K. Gürlebeck, Zeitschrift für Analysis und ihre Anwendungen, Vol. 21 (4), 2002)

Erscheint lt. Verlag 22.5.2001
Zusatzinfo XVIII, 551 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 932 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Schlagworte Algebra • Algebraic Expressions • Algebraic Geometry • algorithms • Clifford-Algebra • Clifford Algebras • Computational Geometry • Computer • Computergrafik • computer vision • Geometric Computing • Geometric Languages • Geometrische Datenverarbeitung • Image Processing • Künstliche Intelligenz • Neural Computation • robot • Robotics • Signal Processing
ISBN-10 3-540-41198-4 / 3540411984
ISBN-13 978-3-540-41198-7 / 9783540411987
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
CHF 48,85
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
CHF 27,90
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
CHF 34,90