A Primer of Real Analytic Functions
Springer-Verlag New York Inc.
978-1-4612-6412-5 (ISBN)
1 Elementary Properties.- 1.1 Basic Properties of Power Series.- 1.2 Analytic Continuation.- 1.3 The Formula of Faà di Bruno.- 1.4 Composition of Real Analytic Functions.- 1.5 Inverse Functions.- 2 Multivariable Calculus of Real Analytic Functions.- 2.1 Power Series in Several Variables.- 2.2 Real Analytic Functions of Several Variables.- 2.3 The Implicit function Theorem.- 2.4 A Special Case of the Cauchy-Kowalewsky Theorem.- 2.5 The Inverse function Theorem.- 2.6 Topologies on the Space of Real Analytic Functions.- 2.7 Real Analytic Submanifolds.- 2.8 The General Cauchy-Kowalewsky Theorem.- 3 Classical Topics.- 3.0 Introductory Remarks.- 3.1 The Theorem ofPringsheim and Boas.- 3.2 Besicovitch’s Theorem.- 3.3 Whitney’s Extension and Approximation Theorems.- 3.4 The Theorem of S. Bernstein.- 4 Some Questions of Hard Analysis.- 4.1 Quasi-analytic and Gevrey Classes.- 4.2 Puiseux Series.- 4.3 Separate Real Analyticity.- 5 Results Motivated by Partial Differential Equations.- 5.1 Division of Distributions I.- 5.2 Division of Distributions II.- 5.3 The FBI Transform.- 5.4 The Paley-Wiener Theorem.- 6 Topics in Geometry.- 6.1 The Weierstrass Preparation Theorem.- 6.2 Resolution of Singularities.- 6.3 Lojasiewicz’s Structure Theorem for Real Analytic Varieties.- 6.4 The Embedding of Real Analytic Manifolds.- 6.5 Semianalytic and Subanalytic Sets.- 6.5.1 Basic Definitions.
Erscheint lt. Verlag | 7.9.2012 |
---|---|
Reihe/Serie | Birkhäuser Advanced Texts Basler Lehrbücher |
Zusatzinfo | XIII, 209 p. |
Verlagsort | New York |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 1-4612-6412-X / 146126412X |
ISBN-13 | 978-1-4612-6412-5 / 9781461264125 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich