A First Course in Noncommutative Rings
Seiten
2001
|
2nd ed. 2001
Springer-Verlag New York Inc.
978-0-387-95183-6 (ISBN)
Springer-Verlag New York Inc.
978-0-387-95183-6 (ISBN)
A First Course in Noncommutative Rings, an outgrowth of the author's lectures at the University of California at Berkeley, is intended as a textbook for a one-semester course in basic ring theory. The material covered includes the Wedderburn-Artin theory of semisimple rings, Jacobson's theory of the radical, representation theory of groups and algebras, prime and semiprime rings, local and semilocal rings, perfect and semiperfect rings, etc. By aiming the level of writing at the novice rather than the connoisseur and by stressing th the role of examples and motivation, the author has produced a text that is suitable not only for use in a graduate course, but also for self- study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.
1 Wedderburn—Artin Theory.- 2 Jacobson Radical Theory.- 3 Introduction to Representation Theory.- 4 Prime and Primitive Rings.- 5 Introduction to Division Rings.- 6 Ordered Structures in Rings.- 7 Local Rings, Semilocal Rings, and Idempotents.- 8 Perfect and Semiperfect Rings.- References.- Name Index.
Reihe/Serie | Graduate Texts in Mathematics ; 131 |
---|---|
Zusatzinfo | XIX, 388 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
ISBN-10 | 0-387-95183-0 / 0387951830 |
ISBN-13 | 978-0-387-95183-6 / 9780387951836 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
CHF 55,95