Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds
Springer (Verlag)
978-0-7923-5090-3 (ISBN)
1 Dynamical systems with homogeneous configuration spaces.- 1 Dynamical systems with symmetries.- 2 The existence of a maximal involutive set of functions on the orbits of semi-simple elements of a semi-simple Lie algebra.- 3 The integrability criterion and spherical pairs of Lie groups.- 4 Interpolation property of spherical pairs of compact Lie groups.- 5 Spherical pairs of classical simple Lie groups.- 6 Classification of spherical pairs of the exceptional simple Lie algebras.- 7 Classification of spherical pairs of semi-simple Lie groups.- 2 Geometric quantization and integratble dynamical systems.- 1 Connections on line bundles.- 2 Flat partial connections.- 3 Geometric quantization.- 4.1 Introduction.- 5 Examples: geometric quantization of the oscillator type Hamiltonian systems.- 3 Structures on manifolds and algebraic integrability of dynamical systems.- 1 Poisson structures and dynamical systems with symmetries.- 2 The reduction method and Poisson structures on dual spaces of semi-direct sums of Lie algebras.- 3 Nonlinear Neumann type dynamical systems as integrable flows on coadjoint orbits of Lie groups.- 4 Abelian integrals, integrable dynamical systems, and their Lax type representations.- 5 Dual momentum mappings and their applications.- 6 The Lie algebraic setting of Benney-Kaup dynamical systems and associated via Moser Neumann-Bogoliubov oscillatory flows.- 7 The finite-dimensional Moser type of reduction of modified Boussinesq and super-Korteweg-de Vries Hamiltonian systems via the gradient-holonomic algorithm and dual moment maps.- 8 Lax-type of flows on Grassmann manifolds and dual momentum mappings.- 9 On the geometric structure of integrable flows in Grassmann manifolds.- 4 Algebraic methods of quantum statistical mechanics and their applications.-1 Current algebra representation formalism in nonrelativistic quantum mechanics.- 2 Lie current algebra, Hamiltonian operator, and Bogoliubov functional equations.- 3 The secondary quantization method and the spectrum of quantum excitations of a nonlinear Schrödinger type dynamical system.- 4 Unitary representations of the generalized Virasoro algebra.- 5 Algebraic and differential geometric aspects of the integrability of nonlinear dynamical systems on infinite-dimensional functional manifolds.- 1 The current Lie algebra on S1 and its functional representations.- 2 The gradient holonomic algorithm and Lax type representation.- 3 Lagrangian and Hamiltonian formalisms for reduced infinite-dimensional dynamical systems with symmetries.- 4 The algebraic structure of the gradient-holonomic algorithm for Lax type integrable nonlinear dynamical systems.- 5 The integrability of Lie-invariant geometric objects generated by ideals in the Grassmann algebra.- 6 The algebraic structure of the gradient-holonomic algorithm for the Lax-type nonlinear dynamical systems: the reduction via Dirac and the canonical quantization procedure.- 7 Hamiltonian structures of hydrodynamical Benny type dynamical systems and their associated Boltzmann-Vlasov kinetic equations on an axis.- References.
Reihe/Serie | Mathematics and Its Applications ; 443 | Mathematics and Its Applications ; 443 |
---|---|
Zusatzinfo | 559 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 170 x 244 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
ISBN-10 | 0-7923-5090-1 / 0792350901 |
ISBN-13 | 978-0-7923-5090-3 / 9780792350903 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich