Smooth Homogeneous Structures in Operator Theory (eBook)
320 Seiten
CRC Press (Verlag)
978-1-4200-3480-6 (ISBN)
Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research.Requiring only a moderate familiarity with functional analysis and general topology, the author begins with an introduction to infinite dimensional Lie theory with emphasis on the relationship between Lie groups and Lie algebras. A detailed examination of smooth homogeneous spaces follows. This study is illustrated by familiar examples from operator theory and develops methods that allow endowing such spaces with structures of complex manifolds. The final section of the book explores equivariant monotone operators and Khler structures. It examines certain symmetry properties of abstract reproducing kernels and arrives at a very general version of the construction of restricted Grassmann manifolds from the theory of loop groups.The author provides complete arguments for nearly every result. An extensive list of references and bibliographic notes provide a clear picture of the applicability of geometric methods in functional analysis, and the open questions presented throughout the text highlight interesting new research opportunities.Daniel Beltit is a Principal Researcher at the Institute of Mathematics 'Simion Stoilow' of the Romanian Academy, Bucharest, Romania.
Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research. Requiring only a moderate familiarity with funct
Erscheint lt. Verlag | 1.11.2005 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
ISBN-10 | 1-4200-3480-4 / 1420034804 |
ISBN-13 | 978-1-4200-3480-6 / 9781420034806 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich