Stability and Stable Oscillations in Discrete Time Systems
Taylor & Francis Ltd (Verlag)
978-90-5699-671-0 (ISBN)
Aristide Halanay, Vladimir Rasvan
Part I: Introduction 1. Models with Discrete Storage of the Information 2. Discrete-Time Models Induced by Impulses Occurring in Continous Time Systems 3. Discrete Systems Occourring from Sampled Data Control Systems 4. Numerical Treatment of Continous-Time Systems II: Stability Theory 5. Linear Discrete Time Systems with Constant Coefficients 6. General Properties of Linear Systems 7. Stability by the First Approximation 8. Linear Discrete-Time Systems with Periodic Coefficients 9. Liapunov Functions 10. Invariance Principle. Barbashin-Krasovskii-La Salle Theorem 11. Stability in Discrete Models of Chemical Kinetics 12. Stability Results in Neurodynamics 13. Stability Via Input/Output Properties III: Absolute Stability of Control Systems 14. The Simplist Absolute Stability Criterion of Ya. Z. Tsypkin 15. More Special Classes of Nonlinearities; Quadratic Constraints of Yakubovich Type 16. An Absolute Stability Criterion for the Case of Nondecreasing Nonlinearity 17. The Brockett-Willems Type Criterion for Systems with Nondecreasing Nonlinearity 18. Liapunov Functions and Frequency Domain Inequalities in Absolute Stability. The Lemma of Kalman-Szego-Popov-Yakubovich (Single Input Case) 19. A New Condition of Absolute Stability for Systems with Slope Restricted Nonlinearity 20. The Kalman-Szego-Popov-Yakubovich Result for Multi-Input Systems 21. Absolute Stability Conditions for Systems with Several Nonlinearities IV: Stable Oscillations 22. Periodic Solutions of Forced Linear Systems with Periodic Coefficiencients (Forced Oscillations) 23. Almost Periodic Sequences 24. Forced Almost Periodic Oscillations 25. Linear Systems in a Product Space. Stable Invariant Surfaces 26. Nonlinear Periodic and Almost Periodic Oscillations 27. Invariant Manifolds for Nonlinear Systems in a Product Space 28. Frequency Domain Conditions for Stable Oscillations of Control Systems 4. Stable Oscillations
Erscheint lt. Verlag | 31.10.2000 |
---|---|
Verlagsort | London |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 544 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 90-5699-671-1 / 9056996711 |
ISBN-13 | 978-90-5699-671-0 / 9789056996710 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich