Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Iteration of Rational Functions - Alan F. Beardon

Iteration of Rational Functions

Complex Analytic Dynamical Systems

(Autor)

Buch | Softcover
280 Seiten
2000 | Softcover reprint of the original 1st ed. 1991
Springer-Verlag New York Inc.
978-0-387-95151-5 (ISBN)
CHF 112,30 inkl. MwSt
This book makes available a comprehensive, detailed, and organized treatment of the foundations of the theory of iteration of rational functions of a complex variable. The material covered extends from the original memoirs of Fatou and Julia to the recent and important results and methods of Sullivan and Shishikura. Many of the details of the proofs have not occurred in print before. The theory of of dynamical systems and chaos has recently undergone a rapid growth in popularity, in part due to the spectacular computer graphics of Julia sets, fractals, and the Mandelbrot set. This text focuses on the specialized area of complex analytic dynamics, a subject that dates back to 1916 and is currently a very active area in mathematics.

1 Examples.- 1.1. Introduction.- 1.2. Iteration of Möbius Transformations.- 1.3. Iteration of z ? z2.- 1.4. Tchebychev Polynomials.- 1.5. Iteration of z ? z2 ? 1.- 1.6. Iteration of z ? z2 + c.- 1.7. Iteration of z ? z + 1/z.- 1.8. Iteration of z ? 2z ? 1/z.- 1.9. Newton’s Approximation.- 1.10. General Remarks.- 2 Rational Maps.- 2.1. The Extended Complex Plane.- 2.2. Rational Maps.- 2.3. The Lipschitz Condition.- 2.4. Conjugacy.- 2.5. Valency.- 2.6. Fixed Points.- 2.7. Critical Points.- 2.8. A Topology on the Rational Functions.- 3 The Fatou and Julia Sets.- 3.1. The Fatou and Julia Sets.- 3.2. Completely Invariant Sets.- 3.3. Normal Families and Equicontinuity.- Appendix I. The Hyperbolic Metric.- 4 Properties of the Julia Set.- 4.1. Exceptional Points.- 4.2. Properties of the Julia Set.- 4.3. Rational Maps with Empty Fatou Set.- Appendix II. Elliptic Functions.- 5 The Structure of the Fatou Set.- 5.1. The Topology of the Sphere.- 5.2. Completely Invariant Components of the Fatou Set.- 5.3. The Euler Characteristic.- 5.4. The Riemann-Hurwitz Formula for Covering Maps.- 5.5. Maps Between Components of the Fatou Set.- 5.6. The Number of Components of the Fatou Set.- 5.7. Components of the Julia Set.- 6 Periodic Points.- 6.1. The Classification of Periodic Points.- 6.2. The Existence of Periodic Points.- 6.3. (Super) Attracting Cycles.- 6.4. Repelling Cycles.- 6.5. Rationally Indifferent Cycles.- 6.6. Irrationally Indifferent Cycles in F.- 6.7. Irrationally Indifferent Cycles in J.- 6.8. The Proof of the Existence of Periodic Points.- 6.9. The Julia Set and Periodic Points.- 6.10. Local Conjugacy.- Appendix III. Infinite Products.- Appendix IV. The Universal Covering Surface.- 7 Forward Invariant Components.- 7.1. The Five Possibilities.- 7.2. LimitFunctions.- 7.3. Parabolic Domains.- 7.4. Siegel Discs and Herman Rings.- 7.5. Connectivity of Invariant Components.- 8 The No Wandering Domains Theorem.- 8.1. The No Wandering Domains Theorem.- 8.2. A Preliminary Result.- 8.3. Conformal Structures.- 8.4. Quasiconformal Conjugates of Rational Maps.- 8.5. Boundary Values of Conjugate Maps.- 8.6. The Proof of Theorem 8.1.2.- 9 Critical Points.- 9.1. Introductory Remarks.- 9.2. The Normality of Inverse Maps.- 9.3. Critical Points and Periodic Domains.- 9.4. Applications.- 9.5. The Fatou Set of a Polynomial.- 9.6. The Number of Non-Repelling Cycles.- 9.7. Expanding Maps.- 9.8. Julia Sets as Cantor Sets.- 9.9. Julia Sets as Jordan Curves.- 9.10. The Mandelbrot Set.- 10 Hausdorff Dimension.- 10.1. Hausdorff Dimension.- 10.2. Computing Dimensions.- 10.3. The Dimension of Julia Sets.- 11 Examples.- 11.1. Smooth Julia Sets.- 11.2. Dendrites.- 11.3. Components of F of Infinite Connectivity.- 11.4. F with Infinitely Connected and Simply Connected Components.- 11.5. J with Infinitely Many Non-Degenerate Components.- 11.6. F of Infinite Connectivity with Critical Points in J.- 11.7. A Finitely Connected Component of F.- 11.8. J Is a Cantor Set of Circles.- 11.9. The Function (z ? 2)2/z2.- References.- Index of Examples.

Reihe/Serie Graduate Texts in Mathematics ; 132
Zusatzinfo 1 Illustrations, black and white; XVI, 280 p. 1 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie
ISBN-10 0-387-95151-2 / 0387951512
ISBN-13 978-0-387-95151-5 / 9780387951515
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
CHF 109,95