Quantization and Non-holomorphic Modular Forms
Springer Berlin (Verlag)
978-3-540-67861-8 (ISBN)
Distributions associated with the non-unitary principal series.- Modular distributions.- The principal series of SL(2, ?) and the Radon transform.- Another look at the composition of Weyl symbols.- The Roelcke-Selberg decomposition and the Radon transform.- Recovering the Roelcke-Selberg coefficients of a function in L 2(???).- The "product" of two Eisenstein distributions.- The roelcke-selberg expansion of the product of two eisenstein series: the continuous part.- A digression on kloosterman sums.- The roelcke-selberg expansion of the product of two eisenstein series: the discrete part.- The expansion of the poisson bracket of two eisenstein series.- Automorphic distributions on ?2.- The Hecke decomposition of products or Poisson brackets of two Eisenstein series.- A generating series of sorts for Maass cusp-forms.- Some arithmetic distributions.- Quantization, products and Poisson brackets.- Moving to the forward light-cone: the Lax-Phillips theory revisited.- Automorphic functions associated with quadratic PSL(2, ?)-orbits in P 1(?).- Quadratic orbits: a dual problem.
Erscheint lt. Verlag | 28.8.2000 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | X, 258 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 381 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | 11F03 • 11L05 • 35S99 • 44A12 • 81S99 • automorphic distributions • Boundary value problem • Hardcover, Softcover / Mathematik/Arithmetik, Algebra • HC/Mathematik/Arithmetik, Algebra • Kloosterman series • Lax-Phillips theory • Modulform • Non-holomorphic modular forms • Quantisierung • Rankin-Cohen products • scattering theory • wave equation |
ISBN-10 | 3-540-67861-1 / 3540678611 |
ISBN-13 | 978-3-540-67861-8 / 9783540678618 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich