Compositions of Quadratic Forms
De Gruyter (Verlag)
978-3-11-012629-7 (ISBN)
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
"This is an introduction to the field, a research monograph, and a comprehensive survey."P. Schmitt, Wien, in: Monatshefte für Mathematik, Wien, 1/2003
"This is an introduction to the field, a research monograph, and a comprehensive survey."
P. Schmitt, Wien, in: Monatshefte für Mathematik, Wien, 1/2003
"[...] the book under review contains an impressive wealth of material. Most of it has only appeared in research papers, but quite a few points have been streamlined, and some results were previously unpublished. The mathematical taste of the author also contributes to this abundance: he obviously takes pleasure (to the reader's delight) in discussing topics which are marginally related to compositions of quadratic forms if they look striking or particularly appealing in some ways." Mathematical Reviews
"The author considers all facets, variations and generalisations of this theme in great detail. Many different ideas and methods from algebra, geometry, combinatorics and topology have been used and are presented here. The choice of material shows good taste and reveals the author's love for this subject. A lot of exercises and 25 pages of references to the original literature complete the book." Zentralblatt für Mathematik
Erscheint lt. Verlag | 31.8.2000 |
---|---|
Reihe/Serie | De Gruyter Expositions in Mathematics ; 33 |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 842 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Addition • Algebra • Algebraische Zahlentheorie • Allgemeines, Lexika • Analysis • Applied mathematics • Community • Composition • Development • Dt • Dynamical Systems • finite group • Form • forms • Forms, Quadratic • GB • German • Germany • Hardcover, Softcover / Mathematik/Allgemeines, Lexika • HC/Mathematik/Allgemeines, Lexika • HC/Mathematik/Arithmetik, Algebra • Interest • knot theory • Lens • Lie algebra • LITMITTELALT • manifold • Mantis • Mathematical Analysis • Mathematics • Methods • New York • Planning • Produktformel • Quadratic • quadratic form • quadratische • Quadratische Form • Quadratische Formen • relationships • Russia • Russian • Surface • Surfaces • University • variational problem • VERFASSERLEXIKON • Volume • Zahlentheorie |
ISBN-10 | 3-11-012629-X / 311012629X |
ISBN-13 | 978-3-11-012629-7 / 9783110126297 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich