Machine Learning: ECML 2000
Springer Berlin (Verlag)
978-3-540-67602-7 (ISBN)
Invited Papers.- Beyond Occam's Razor: Process-Oriented Evaluation.- The Representation Race - Preprocessing for Handling Time Phenomena.- Contributed Papers.- Short-Term Profiling for a Case-Based Reasoning Recommendation System.- K-SVCR. A Multi-class Support Vector Machine.- Learning Trading Rules with Inductive Logic Programming.- Improving Knowledge Discovery Using Domain Knowledge in Unsupervised Learning.- Exploiting Classifier Combination for Early Melanoma Diagnosis Support.- A Comparison of Ranking Methods for Classification Algorithm Selection.- Hidden Markov Models with Patterns and Their Application to Integrated Circuit Testing.- Comparing Complete and Partial Classification for Identifying Latently Dissatisfied Customers.- Wrapper Generation via Grammar Induction.- Diversity versus Quality in Classification Ensembles Based on Feature Selection.- Minimax TD-Learning with Neural Nets in a Markov Game.- Boosting Applied to Word Sense Disambiguation.- A Multiple Model Cost-Sensitive Approach for Intrusion Detection.- Value Miner: A Data Mining Environment for the Calculation of the Customer Lifetime Value with Application to the Automotive Industry.- Investigation and Reduction of Discretization Variance in Decision Tree Induction.- Asymmetric Co-evolution for Imperfect-Information Zero-Sum Games.- A Machine Learning Approach to Workflow Management.- The Utilization of Context Signals in the Analysis of ABR Potentials by Application of Neural Networks.- Complexity Approximation Principle and Rissanen's Approach to Real-Valued Parameters.- Handling Continuous-Valued Attributes in Decision Tree with Neural Network Modeling.- Learning Context-Free Grammars with a Simplicity Bias.- Partially Supervised Text Classification: Combining Labeled and Unlabeled Documents Using an EM-like Scheme.- Toward an Explanatory Similarity Measure for Nearest-Neighbor Classification.- Relative Unsupervised Discretization for Regression Problems.- Metric-Based Inductive Learning Using Semantic Height Functions.- Error Analysis of Automatic Speech Recognition Using Principal Direction Divisive Partitioning.- A Study on the Performance of Large Bayes Classifier.- Dynamic Discretization of Continuous Values from Time Series.- Using a Symbolic Machine Learning Tool to Refine Lexico-syntactic Patterns.- Measuring Performance when Positives Are Rare: Relative Advantage versus Predictive Accuracy - A Biological Case-Study.- Mining TCP/IP Traffic for Network Intrusion Detection by Using a Distributed Genetic Algorithm.- Learning Patterns of Behavior by Observing System Events.- Dimensionality Reduction through Sub-space Mapping for Nearest Neighbour Algorithms.- Nonparametric Regularization of Decision Trees.- An Efficient and Effective Procedure for Updating a Competence Model for Case-Based Reasoners.- Layered Learning.- Problem Decomposition for Behavioural Cloning.- Dynamic Feature Selection in Incremental Hierarchical Clustering.- On the Boosting Pruning Problem.- An Empirical Study of MetaCost Using Boosting Algorithms.- Clustered Partial Linear Regression.- Knowledge Discovery from Very Large Databases Using Frequent Concept Lattices.- Some Improvements on Event-Sequence Temporal Region Methods.
Erscheint lt. Verlag | 17.5.2000 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XII, 472 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 676 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Algorithmen | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithm analysis and problem complexity • Algorithmic Learning • algorithms • classification • Cognition • Complexity • Data Mining • Decision Diagrams • Genetic algorithms • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • inductive learning • Inductive Logic Programming • inference • Knowledge Discovery • learning • machine learning • Maschinelles Lernen • Newral Networks Case-Based Reasoning • proving • Statistical Learning |
ISBN-10 | 3-540-67602-3 / 3540676023 |
ISBN-13 | 978-3-540-67602-7 / 9783540676027 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich