Nicht aus der Schweiz? Besuchen Sie lehmanns.de

SURVEY OF TRACE FORMS OF ALGEBRAIC..(V2) (eBook)

eBook Download: PDF
1984
328 Seiten
World Scientific Publishing Company (Verlag)
978-981-4412-78-0 (ISBN)

Lese- und Medienproben

SURVEY OF TRACE FORMS OF ALGEBRAIC..(V2) - P E Conner, Robert V Perlis
Systemvoraussetzungen
129,99 inkl. MwSt
(CHF 126,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Every finite separable field extension F/K carries a canonical inner product, given by trace(xy). This symmetric K-bilinear form is the trace form of F/K.When F is an algebraic number field and K is the field Q of rational numbers, the trace form goes back at least 100 years to Hermite and Sylvester. These notes present the first systematic treatment of the trace form as an object in its own right. Chapter I discusses the trace form of F/Q up to Witt equivalence in the Witt ring W(Q). Special attention is paid to the Witt classes arising from normal extensions F/Q. Chapter II contains a detailed analysis of trace forms over p-adic fields. These local results are applied in Chapter III to prove that a Witt class X in W(Q) is represented by the trace form of an extension F/Q if and only if X has non-negative signature. Chapter IV discusses integral trace forms, obtained by restricting the trace form of F/Q to the ring of algebraic integers in F. When F/Q is normal, the Galois group acts as a group of isometries of the integral trace form. It is proved that when F/Q is normal of prime degree, the integral form is determined up to equivariant integral equivalence by the discriminant of F alone. Chapter V discusses the equivariant Witt theory of trace forms of normal extensions F/Q and Chapter VI relates the trace form of F/Q to questions of ramification in F. These notes were written in an effort to identify central problems. There are many open problems listed in the text. An introduction to Witt theory is included and illustrative examples are discussed throughout.
Erscheint lt. Verlag 1.7.1984
Reihe/Serie Series In Pure Mathematics
Series In Pure Mathematics
SERIES IN PURE MATHEMATICS
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 981-4412-78-3 / 9814412783
ISBN-13 978-981-4412-78-0 / 9789814412780
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich