Diophantine Geometry
Springer-Verlag New York Inc.
978-0-387-98975-4 (ISBN)
A The Geometry of Curves and Abelian Varieties.- A.1 Algebraic Varieties.- A.2 Divisors.- A.3 Linear Systems.- A.4 Algebraic Curves.- A.5 Abelian Varieties over C.- A.6 Jacobians over C.- A.7 Abelian Varieties over Arbitrary Fields.- A.8 Jacobians over Arbitrary Fields.- A.9 Schemes.- B Height Functions.- B.1 Absolute Values.- B.2 Heights on Projective Space.- B.3 Heights on Varieties.- B.4 Canonical Height Functions.- B.5 Canonical Heights on Abelian Varieties.- B.6 Counting Rational Points on Varieties.- B.7 Heights and Polynomials.- B.8 Local Height Functions.- B.9 Canonical Local Heights on Abelian Varieties.- B.10 Introduction to Arakelov Theory.- Exercises.- C Rational Points on Abelian Varieties.- C.1 The Weak Mordell—Weil Theorem.- C.2 The Kernel of Reduction Modulo p.- C.3 Appendix: Finiteness Theorems in Algebraic Number Theory.- C.4 Appendix: The Selmer and Tate—Shafarevich Groups.- C.5 Appendix: Galois Cohomology and Homogeneous Spaces.- Exercises.- D Diophantine Approximation and Integral Points on Curves.- D.1 Two Elementary Results on Diophantine Approximation.- D.2 Roth’s Theorem.- D.3 Preliminary Results.- D.4 Construction of the Auxiliary Polynomial.- D.5 The Index Is Large.- D.6 The Index Is Small (Roth’s Lemma).- D.7 Completion of the Proof of Roth’s Theorem.- D.8 Application: The Unit Equation U + V = 1.- D.9 Application: Integer Points on Curves.- Exercises.- E Rational Points on Curves of Genus at Least 2.- E.I Vojta’s Geometric Inequality and Faltings’ Theorem.- E.2 Pinning Down Some Height Functions.- E.3 An Outline of the Proof of Vojta’s Inequality.- E.4 An Upper Bound for h?(z, w).- E.5 A Lower Bound for h?(z,w) for Nonvanishing Sections.- E.6 Constructing Sections of Small Height I: Applying Riemann—Roch.- E.7 Constructing Sections of Small Height II: Applying Siegel’s Lemma.- E.8 Lower Bound for h?(z,w) at Admissible Version I.- E.9 Eisenstein’s Estimate for the Derivatives of an Algebraic Function.- E.10 Lower Bound for h?(z,w) at Admissible: Version II.- E.11 A Nonvanishing Derivative of Small Order.- E.12 Completion of the Proof of Vojta’s Inequality.- Exercises.- F Further Results and Open Problems.- F.1 Curves and Abelian Varieties.- F.2 Discreteness of Algebraic Points.- F.3 Height Bounds and Height Conjectures.- F.4 The Search for Effectivity.- F.5 Geometry Governs Arithmetic.- Exercises.- References.- List of Notation.
Reihe/Serie | Graduate Texts in Mathematics ; 201 |
---|---|
Zusatzinfo | XIII, 561 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-387-98975-7 / 0387989757 |
ISBN-13 | 978-0-387-98975-4 / 9780387989754 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich