Algorithmic Learning Theory
Springer Berlin (Verlag)
978-3-540-66748-3 (ISBN)
Invited Lectures.- Tailoring Representations to Different Requirements.- Theoretical Views of Boosting and Applications.- Extended Stochastic Complexity and Minimax Relative Loss Analysis.- Regular Contributions.- Algebraic Analysis for Singular Statistical Estimation.- Generalization Error of Linear Neural Networks in Unidentifiable Cases.- The Computational Limits to the Cognitive Power of the Neuroidal Tabula Rasa.- The Consistency Dimension and Distribution-Dependent Learning from Queries (Extended Abstract).- The VC-Dimension of Subclasses of Pattern Languages.- On the V ? Dimension for Regression in Reproducing Kernel Hilbert Spaces.- On the Strength of Incremental Learning.- Learning from Random Text.- Inductive Learning with Corroboration.- Flattening and Implication.- Induction of Logic Programs Based on ?-Terms.- Complexity in the Case Against Accuracy: When Building One Function-Free Horn Clause Is as Hard as Any.- A Method of Similarity-Driven Knowledge Revision for Type Specializations.- PAC Learning with Nasty Noise.- Positive and Unlabeled Examples Help Learning.- Learning Real Polynomials with a Turing Machine.- Faster Near-Optimal Reinforcement Learning: Adding Adaptiveness to the E3 Algorithm.- A Note on Support Vector Machine Degeneracy.- Learnability of Enumerable Classes of Recursive Functions from "Typical" Examples.- On the Uniform Learnability of Approximations to Non-recursive Functions.- Learning Minimal Covers of Functional Dependencies with Queries.- Boolean Formulas Are Hard to Learn for Most Gate Bases.- Finding Relevant Variables in PAC Model with Membership Queries.- General Linear Relations among Different Types of Predictive Complexity.- Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph.- On Learning Unionsof Pattern Languages and Tree Patterns.
Erscheint lt. Verlag | 17.11.1999 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XII, 372 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 494 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithm analysis and problem complexity • Algorithmic Learning • Algorithmic Learning Theory • algorithms • Boosting • Complexity • Data Mining • Formal Languages • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Inductive Inference • Inductive Logic Programming • Künstliche Intelligenz • learning • Learning theory • Lerntheorie • Logic • Logische Programmierung • Reinforcement Learning • Support Vector Machine • Variable |
ISBN-10 | 3-540-66748-2 / 3540667482 |
ISBN-13 | 978-3-540-66748-3 / 9783540667483 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich