Logic with a Probability Semantics (eBook)
126 Seiten
Lehigh University Press (Verlag)
978-1-61146-011-7 (ISBN)
The present study is an extension of the topic introduced in Dr. Hailperin's Sentential Probability Logic, where the usual true-false semantics for logic is replaced with one based more on probability, and where values ranging from 0 to 1 are subject to probability axioms. Moreover, as the word 'sentential' in the title of that work indicates, the language there under consideration was limited to sentences constructed from atomic (not inner logical components) sentences, by use of sentential connectives ('no,' 'and,' 'or,' etc.) but not including quantifiers ('for all,' 'there is'). An initial introduction presents an overview of the book. In chapter one, Halperin presents a summary of results from his earlier book, some of which extends into this work. It also contains a novel treatment of the problem of combining evidence: how does one combine two items of interest for a conclusion-each of which separately impart a probability for the conclusion-so as to have a probability for the conclusion based on taking both of the two items of interest as evidence? Chapter two enlarges the Probability Logic from the first chapter in two respects: the language now includes quantifiers ('for all,' and 'there is') whose variables range over atomic sentences, not entities as with standard quantifier logic. (Hence its designation: ontological neutral logic.) A set of axioms for this logic is presented. A new sentential notion-the suppositional-in essence due to Thomas Bayes, is adjoined to this logic that later becomes the basis for creating a conditional probability logic. Chapter three opens with a set of four postulates for probability on ontologically neutral quantifier language. Many properties are derived and a fundamental theorem is proved, namely, for any probability model (assignment of probability values to all atomic sentences of the language) there will be a unique extension of the probability values to all closed sentences of the language. The chapter concludes by showing the Borel's early denumerable probability concept (1909) can be justified by its being, in essence, close to Hailperin's probability result applied to denumerable language. The final chapter introduces the notion of conditional-probability to a language having quantifiers of the kind discussed in chapter two. A definition of probability for this type of language is defined and some of its properties characterized. The much discussed and written about Confirmation Paradox is presented and theorems involving conditional probability for this quantifier language with the conditional are derived. Using these results, Hailperin obtains a resolution of this paradox.
Theodore Hailperin is emeritus professor of mathematics at Lehigh University. He has also worked as an aerodynamic ballistician at the Ballistics Research Laboratory in Aberdeen, MD. He is the author of Boole's Logic and Probability, Sentential Probability Logic, and numerous journal articles.
1 Preface2 Introduction: An OverviewPart 3 1. Sentenial Probability LogicChapter 4 1.1 Verity logicChapter 5 1.2 Probability logic for SChapter 6 1.3 Interval-based probabilityChapter 7 1.4 Sentential suppositional logicChapter 8 1.5 Conditional-probability logicChapter 9 1.6 Logical consequence for probability logicChapter 10 1.7 Combining evidencePart 11 2. Logic With QuantifiersChapter 12 2.0 Ontologically neutral (ON) languageChapter 13 2.1 Syntax and semantics of ON logicChapter 14 2.2 Axiomatic formalization of ON logicChapter 15 2.3 Adequacy of ON logicChapter 16 2.4 Quantification logic with the suppositionalPart 17 3. Probability functions on ON languagesChapter 18 3.1 Probability functions on ON languagesChapter 19 3.2 Main Theorem of ON probability logicChapter 20 3.3 Borel's denumerable probabilityChapter 21 3.4 Infinite "events" and probability functionsChapter 22 3.5 Kolmogorov probability spacesChapter 23 3.6 Logical consequence in probability logicChapter 24 3.7 Borel's denumerable probability defendedPart 25 4. Conditional-Probability and QuantifiersChapter 26 4.1 Conditional-probability in quantifier logicChapter 27 4.2 The paradox of confirmation28 Bibliography29 Index
Erscheint lt. Verlag | 16.12.2010 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 1-61146-011-5 / 1611460115 |
ISBN-13 | 978-1-61146-011-7 / 9781611460117 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich