Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Logic with a Probability Semantics (eBook)

eBook Download: EPUB
2010
126 Seiten
Lehigh University Press (Verlag)
978-1-61146-011-7 (ISBN)

Lese- und Medienproben

Logic with a Probability Semantics -  Theodore Hailperin
Systemvoraussetzungen
85,79 inkl. MwSt
(CHF 83,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The book extends the development of probability logic_a logic using probability, not verity (true, false) as the basic semantic notion. The basic connectives 'not,' 'and,' and 'or' are described in depth to include quantified formulas. Also discussed is the notion of the suppositional, and resolution of the paradox of confirmation.
The present study is an extension of the topic introduced in Dr. Hailperin's Sentential Probability Logic, where the usual true-false semantics for logic is replaced with one based more on probability, and where values ranging from 0 to 1 are subject to probability axioms. Moreover, as the word 'sentential' in the title of that work indicates, the language there under consideration was limited to sentences constructed from atomic (not inner logical components) sentences, by use of sentential connectives ('no,' 'and,' 'or,' etc.) but not including quantifiers ('for all,' 'there is'). An initial introduction presents an overview of the book. In chapter one, Halperin presents a summary of results from his earlier book, some of which extends into this work. It also contains a novel treatment of the problem of combining evidence: how does one combine two items of interest for a conclusion-each of which separately impart a probability for the conclusion-so as to have a probability for the conclusion based on taking both of the two items of interest as evidence? Chapter two enlarges the Probability Logic from the first chapter in two respects: the language now includes quantifiers ('for all,' and 'there is') whose variables range over atomic sentences, not entities as with standard quantifier logic. (Hence its designation: ontological neutral logic.) A set of axioms for this logic is presented. A new sentential notion-the suppositional-in essence due to Thomas Bayes, is adjoined to this logic that later becomes the basis for creating a conditional probability logic. Chapter three opens with a set of four postulates for probability on ontologically neutral quantifier language. Many properties are derived and a fundamental theorem is proved, namely, for any probability model (assignment of probability values to all atomic sentences of the language) there will be a unique extension of the probability values to all closed sentences of the language. The chapter concludes by showing the Borel's early denumerable probability concept (1909) can be justified by its being, in essence, close to Hailperin's probability result applied to denumerable language. The final chapter introduces the notion of conditional-probability to a language having quantifiers of the kind discussed in chapter two. A definition of probability for this type of language is defined and some of its properties characterized. The much discussed and written about Confirmation Paradox is presented and theorems involving conditional probability for this quantifier language with the conditional are derived. Using these results, Hailperin obtains a resolution of this paradox.

Theodore Hailperin is emeritus professor of mathematics at Lehigh University. He has also worked as an aerodynamic ballistician at the Ballistics Research Laboratory in Aberdeen, MD. He is the author of Boole's Logic and Probability, Sentential Probability Logic, and numerous journal articles.

1 Preface2 Introduction: An OverviewPart 3 1. Sentenial Probability LogicChapter 4 1.1 Verity logicChapter 5 1.2 Probability logic for SChapter 6 1.3 Interval-based probabilityChapter 7 1.4 Sentential suppositional logicChapter 8 1.5 Conditional-probability logicChapter 9 1.6 Logical consequence for probability logicChapter 10 1.7 Combining evidencePart 11 2. Logic With QuantifiersChapter 12 2.0 Ontologically neutral (ON) languageChapter 13 2.1 Syntax and semantics of ON logicChapter 14 2.2 Axiomatic formalization of ON logicChapter 15 2.3 Adequacy of ON logicChapter 16 2.4 Quantification logic with the suppositionalPart 17 3. Probability functions on ON languagesChapter 18 3.1 Probability functions on ON languagesChapter 19 3.2 Main Theorem of ON probability logicChapter 20 3.3 Borel's denumerable probabilityChapter 21 3.4 Infinite "events" and probability functionsChapter 22 3.5 Kolmogorov probability spacesChapter 23 3.6 Logical consequence in probability logicChapter 24 3.7 Borel's denumerable probability defendedPart 25 4. Conditional-Probability and QuantifiersChapter 26 4.1 Conditional-probability in quantifier logicChapter 27 4.2 The paradox of confirmation28 Bibliography29 Index

Erscheint lt. Verlag 16.12.2010
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Logik / Mengenlehre
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-61146-011-5 / 1611460115
ISBN-13 978-1-61146-011-7 / 9781611460117
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
An Introduction to Mathematical Proofs

von Antonella Cupillari

eBook Download (2023)
Elsevier Science (Verlag)
CHF 51,70
A Romance of Many Dimensions (By a Square)

von Edwin A. Abbott

eBook Download (2022)
Cedar Lake Classics (Verlag)
CHF 2,90