Knowledge Discovery with Support Vector Machines (eBook)
262 Seiten
John Wiley & Sons (Verlag)
978-1-118-21103-8 (ISBN)
This book provides an in-depth, easy-to-follow introduction to
support vector machines drawing only from minimal, carefully
motivated technical and mathematical background material. It begins
with a cohesive discussion of machine learning and goes on to
cover:
* Knowledge discovery environments
* Describing data mathematically
* Linear decision surfaces and functions
* Perceptron learning
* Maximum margin classifiers
* Support vector machines
* Elements of statistical learning theory
* Multi-class classification
* Regression with support vector machines
* Novelty detection
Complemented with hands-on exercises, algorithm descriptions,
and data sets, Knowledge Discovery with Support Vector
Machines is an invaluable textbook for advanced undergraduate
and graduate courses. It is also an excellent tutorial on support
vector machines for professionals who are pursuing research in
machine learning and related areas.
Lutz Hamel, PhD, teaches at the University of Rhode Island, where he founded the machine learning and data mining group. His major research interests are computational logic, machine learning, evolutionary computation, data mining, bioinformatics, and computational structures in art and literature.
Preface.
PART I.
1 What is Knowledge Discovery?
1.1 Machine Learning.
1.2 The Structure of the Universe X.
1.3 Inductive Learning.
1.4 Model Representations.
Exercises.
Bibliographic Notes.
2 Knowledge Discovery Environments.
2.1 Computational Aspects of Knowledge Discovery.
2.1.1 Data Access.
2.1.2 Visualization.
2.1.3 Data Manipulation.
2.1.4 Model Building and Evaluation.
2.1.5 Model Deployment.
2.2 Other Toolsets.
Exercises.
Bibliographic Notes.
3 Describing Data Mathematically.
3.1 From Data Sets to Vector Spaces.
3.1.1 Vectors.
3.1.2 Vector Spaces.
3.2 The Dot Product as a Similarity Score.
3.3 Lines, Planes, and Hyperplanes.
Exercises.
Bibliographic Notes.
4 Linear Decision Surfaces and Functions.
4.1 From Data Sets to Decision Functions.
4.1.1 Linear Decision Surfaces through the Origin.
4.1.2 Decision Surfaces with an Offset Term.
4.2 A Simple Learning Algorithm.
4.3 Discussion.
Exercises.
Bibliographic Notes.
5 Perceptron Learning.
5.1 Perceptron Architecture and Training.
5.2 Duality.
5.3 Discussion.
Exercises.
Bibliographic Notes.
6 Maximum Margin Classifiers.
6.1 Optimization Problems.
6.2 Maximum Margins.
6.3 Optimizing the Margin.
6.4 Quadratic Programming.
6.5 Discussion.
Exercises.
Bibliographic Notes.
PART II.
7 Support Vector Machines.
7.1 The Lagrangian Dual.
7.2 Dual MaximumMargin Optimization.
7.2.1 The Dual Decision Function.
7.3 Linear Support Vector Machines.
7.4 Non-Linear Support Vector Machines.
7.4.1 The Kernel Trick.
7.4.2 Feature Search.
7.4.3 A Closer Look at Kernels.
7.5 Soft-Margin Classifiers.
7.5.1 The Dual Setting for Soft-Margin Classifiers.
7.6 Tool Support.
7.6.1 WEKA.
7.6.2 R.
7.7 Discussion.
Exercises.
Bibliographic Notes.
8 Implementation.
8.1 Gradient Ascent.
8.1.1 The Kernel-Adatron Algorithm.
8.2 Quadratic Programming.
8.2.1 Chunking.
8.3 Sequential Minimal Optimization.
8.4 Discussion.
Exercises.
Bibliographic Notes.
9 Evaluating What has been Learned.
9.1 Performance Metrics.
9.1.1 The Confusion Matrix.
9.2 Model Evaluation.
9.2.1 The Hold-Out Method.
9.2.2 The Leave-One-Out Method.
9.2.3 N-Fold Cross-Validation.
9.3 Error Confidence Intervals.
9.3.1 Model Comparisons.
9.4 Model Evaluation in Practice.
9.4.1 WEKA.
9.4.2 R.
Exercises.
Bibliographic Notes.
10 Elements of Statistical Learning Theory.
10.1 The VC-Dimension and Model Complexity.
10.2 A Theoretical Setting for Machine Learning.
10.3 Empirical Risk Minimization.
10.4 VC-Confidence.
10.5 Structural Risk Minimization.
10.6 Discussion.
Exercises.
Bibliographic Notes.
PART III.
11 Multi-Class Classification.
11.1 One-versus-the-Rest Classification.
11.2 Pairwise Classification.
11.3 Discussion.
Exercises.
Bibliographic Notes.
12 Regression with Support Vector Machines.
12.1 Regression as Machine Learning.
12.2 Simple and Multiple Linear Regression.
12.3 Regression with Maximum Margin Machines.
12.4 Regression with Support Vector Machines.
12.5 Model Evaluation.
12.6 Tool Support.
12.6.1 WEKA.
12.6.2 R.
Exercises.
Bibliographic Notes.
13 Novelty Detection.
13.1 Maximum Margin Machines.
13.2 The Dual Setting.
13.3 Novelty Detection in R.
Exercises.
Bibliographic Notes.
Appendix A: Notation.
Appendix B: A Tutorial Introduction to R.
B.1 Programming Constructs.
B.2 Data Constructs.
B.3 Basic Data Analysis.
Bibliographic Notes.
References.
Index.
Erscheint lt. Verlag | 20.9.2011 |
---|---|
Reihe/Serie | Wiley Series on Methods and Applications | Wiley Series on Methods and Applications |
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Office Programme ► Outlook | |
Schlagworte | Computer Science • Data Mining • Data Mining & Knowledge Discovery • Data Mining Statistics • Data Mining u. Knowledge Discovery • Informatik • Software engineering • Software-Engineering • Statistics • Statistik |
ISBN-10 | 1-118-21103-0 / 1118211030 |
ISBN-13 | 978-1-118-21103-8 / 9781118211038 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich