An Introduction to Nonlinear Partial Differential Equations (eBook)
416 Seiten
John Wiley & Sons (Verlag)
978-0-470-28708-8 (ISBN)
"This book is well conceived and well written. The author has
succeeded in producing a text on nonlinear PDEs that is not only
quite readable but also accessible to students from diverse
backgrounds."
--SIAM Review
A practical introduction to nonlinear PDEs and their real-world
applications
Now in a Second Edition, this popular book on nonlinear partial
differential equations (PDEs) contains expanded coverage on the
central topics of applied mathematics in an elementary, highly
readable format and is accessible to students and researchers in
the field of pure and applied mathematics. This book provides a new
focus on the increasing use of mathematical applications in the
life sciences, while also addressing key topics such as linear
PDEs, first-order nonlinear PDEs, classical and weak solutions,
shocks, hyperbolic systems, nonlinear diffusion, and elliptic
equations. Unlike comparable books that typically only use formal
proofs and theory to demonstrate results, An Introduction to
Nonlinear Partial Differential Equations, Second Edition takes a
more practical approach to nonlinear PDEs by emphasizing how the
results are used, why they are important, and how they are applied
to real problems.
The intertwining relationship between mathematics and physical
phenomena is discovered using detailed examples of applications
across various areas such as biology, combustion, traffic flow,
heat transfer, fluid mechanics, quantum mechanics, and the chemical
reactor theory. New features of the Second Edition also
include:
* Additional intermediate-level exercises that facilitate the
development of advanced problem-solving skills
* New applications in the biological sciences, including
age-structure, pattern formation, and the propagation of
diseases
* An expanded bibliography that facilitates further investigation
into specialized topics
With individual, self-contained chapters and a broad scope of
coverage that offers instructors the flexibility to design courses
to meet specific objectives, An Introduction to Nonlinear Partial
Differential Equations, Second Edition is an ideal text for applied
mathematics courses at the upper-undergraduate and graduate levels.
It also serves as a valuable resource for researchers and
professionals in the fields of mathematics, biology, engineering,
and physics who would like to further their knowledge of PDEs.
J. David Logan, PhD, is Willa Cather Professor of Mathematics at the University of Nebraska-Lincoln. He has authored several texts on elementary differential equations and beginning partial differential equations, including Applied Mathematics, Third Edition, also published by Wiley. Dr. Logan's research interests include mathematical physics, combustion and detonation, hydrogeology, and mathematical biology.
Preface.
1. Partial Differential Equations.
1.1 Partial Differential Equations.
1.1.1 PDEs and Solutions.
1.1.2 Classification.
1.1.3 Linear vs. Nonlinear.
1.1.4 Linear Equations.
1.2 Conservation Laws.
1.2.1 One Dimension.
1.2.2 Higher Dimensions.
1.3 Constitutive Relations.
1.4 Initial and Boundary Value Problems.
1.5 Waves.
1.5.1 Traveling Waves.
1.5.2 Plane Waves.
1.5.3 Plane Waves and Transforms.
1.5.4 Nonlinear Dispersion.
2. First-Order Equations and Characteristics.
2.1 Linear First-Order Equations.
2.1.1 Advection Equation.
2.1.2 Variable Coefficients.
2.2 Nonlinear Equations.
2.3 Quasi-linear Equations.
2.3.1 The general solution.
2.4 Propagation of Singularities.
2.5 General First-Order Equation.
2.5.1 Complete Integral.
2.6 Uniqueness Result.
2.7 Models in Biology.
2.7.1 Age-Structure.
2.7.2 Structured predator-prey model.
2.7.3 Chemotherapy.
2.7.4 Mass structure.
2.7.5 Size-dependent predation.
3. Weak Solutions To Hyperbolic Equations.
3.1 Discontinuous Solutions.
3.2 Jump Conditions.
3.2.1 Rarefaction Waves.
3.2.2 Shock Propagation.
3.3 Shock Formation.
3.4 Applications.
3.4.1 Traffic Flow.
3.4.2 Plug Flow Chemical Reactors.
3.5 Weak Solutions: A Formal Approach.
3.6 Asymptotic Behavior of Shocks.
3.6.1 Equal-Area Principle.
3.6.2 Shock Fitting.
3.6.3 Asymptotic Behavior.
4. Hyperbolic Systems.
4.1 Shallow Water Waves; Gas Dynamics.
4.1.1 Shallow Water Waves.
4.1.2 Small-Amplitude Approximation.
4.1.3 Gas Dynamics.
4.2 Hyperbolic Systems and Characteristics.
4.2.1 Classification.
4.3 The Riemann Method.
4.3.1 Jump Conditions for Systems.
4.3.2 Breaking Dam Problem.
4.3.3 Receding Wall Problem.
4.3.4 Formation of a Bore.
4.3.5 Gas Dynamics.
4.4 Hodographs and Wavefronts.
4.4.1 Hodograph Transformation.
4.4.2 Wavefront Expansions.
4.5 Weakly Nonlinear Approximations.
4.5.1 Derivation of Burgers' Equation.
5. Diffusion Processes.
5.1 Diffusion and Random Motion.
5.2 Similarity Methods.
5.3 Nonlinear Diffusion Models.
5.4 Reaction-Diffusion; Fisher's Equation.
5.4.1 Traveling Wave Solutions.
5.4.2 Perturbation Solution.
5.4.3 Stability of Traveling Waves.
5.4.4 Nagumo's Equation.
5.5 Advection-Diffusion; Burgers' Equation.
5.5.1 Traveling Wave Solution.
5.5.2 Initial Value Problem.
5.6 Asymptotic Solution to Burgers' Equation.
5.6.1 Evolution of a Point Source.
6. Reaction-Diffusion Systems.
6.1 Reaction-Diffusion Models.
6.1.1 Predator-Prey Model.
6.1.2 Combustion.
6.1.3 Chemotaxis.
6.2 Traveling Wave Solutions.
6.2.1 Model for the Spread of a Disease.
6.2.2 Contaminant transport in groundwater.
6.3 Existence of Solutions.
6.3.1 Fixed-Point Iteration.
6.3.2 Semi-Linear Equations.
6.3.3 Normed Linear Spaces.
6.3.4 General Existence Theorem.
6.4 Maximum Principles.
6.4.1 Maximum Principles.
6.4.2 Comparison Theorems.
6.5 Energy Estimates and Asymptotic Behavior.
6.5.1 Calculus Inequalities.
6.5.2 Energy Estimates.
6.5.3 Invariant Sets.
6.6 Pattern Formation.
7. Equilibrium Models.
7.1 Elliptic Models.
7.2 Theoretical Results.
7.2.1 Maximum Principle.
7.2.2 Existence Theorem.
7.3 Eigenvalue Problems.
7.3.1 Linear Eigenvalue Problems.
7.3.2 Nonlinear Eigenvalue Problems.
7.4 Stability and Bifurcation.
7.4.1 Ordinary Differential Equations.
7.4.2 Partial Differential Equations.
References.
Index.
"This book is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs." (Mathematical Reviews, 2009c)
Erscheint lt. Verlag | 3.7.2008 |
---|---|
Reihe/Serie | Wiley Series in Pure and Applied Mathematics | Wiley Series in Pure and Applied Mathematics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Technik | |
Schlagworte | Applied Mathematics in Science • Differential Equations • Differentialgleichungen • Mathematics • Mathematik • Mathematik in den Naturwissenschaften • Nichtlineare Differentialgleichung |
ISBN-10 | 0-470-28708-X / 047028708X |
ISBN-13 | 978-0-470-28708-8 / 9780470287088 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich