Human Motion Simulation
Academic Press Inc (Verlag)
978-0-12-405190-4 (ISBN)
Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom.
Karim Abdel-Malek is a professor in the Department of Biomedical Engineering and the Department of Mechanical and Industrial Engineering at the University of Iowa. He obtained his PhD in Mechanical Engineering from the University of Pennsylvania. Dr. Abdel-Malek is the Founder and Director of the Virtual Soldier Research (VSR) program; Director of the Center for Computer Aided Design; former Associate Editor of the International Journal of Robotics and Automation; former Editor-in-Chief of the International Journal of Human Factors Modeling & Simulation; and a Fellow of the American Institute for Medical and Biological Engineering (AIMBE). Dr. Arora is the F. Wendell Miller Distinguished Professor, Emeritus, of Civil, Environmental and Mechanical Engineering at the University of Iowa. He was also Director of the Optimal Design Laboratory and Associate Director of the Center for Computer Aided Design. He is an internationally recognized expert in the fields of optimization, numerical analysis, and real-time implementation. His research interests include optimization-based digital human modeling, dynamic response optimization, optimal control of systems, design sensitivity analysis and optimization of nonlinear systems, and parallel optimization algorithms. Dr. Arora has authored two books, co-authored or edited five others, written 160 journal articles, 27 book chapters, 130 conference papers, and more than 300 technical reports.
1. Introduction2. Human Modeling: Kinematics 3. Posture Prediction and Optimization 4. Recursive Dynamics5. Predictive Dynamics 6. Strength and Fatigue: Experiments and Modeling 7. Predicting the Biomechanics of Walking 8. Predictive Dynamics: Lifting 9. Validation of Predictive Dynamics Tasks 10. Concluding Remarks
Verlagsort | San Diego |
---|---|
Sprache | englisch |
Maße | 191 x 235 mm |
Gewicht | 780 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik | |
ISBN-10 | 0-12-405190-1 / 0124051901 |
ISBN-13 | 978-0-12-405190-4 / 9780124051904 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich