Fundamentals of Wavelets (eBook)
382 Seiten
Wiley (Verlag)
978-0-470-92697-0 (ISBN)
Jaideva C. Goswami, PhD, is an Engineering Advisor at Schlumberger in Sugarland, Texas. He is also a former professor of Electronics and Communication Engineering at the Indian Institute of Technology, Kharagpur. Dr. Goswami has taught several short courses on wavelets and contributed to the Wiley Encyclopedia of Electrical and Electronics Engineering as well as Wiley Encyclopedia of RF and Microwave Engineering. He has many research papers and patents to his credit, and is a Fellow of IEEE. Andrew K. Chan, PhD, is on the faculty of Texas A&M University and is the coauthor of Wavelets in a Box and Wavelet Toolware. He is a Life Fellow of IEEE.
1.What is this book all about?
2. Mathematical Preliminary.
2.1 Linear Spaces.
2.2 Vectors and Vector Spaces.
2.3 Basis Functions, Orthogonality and Biothogonality.
2.4 Local Basis and Riesz Basis.
2.5 Discrete Linear Normed Space.
2.6 Approximation by Orthogonal Projection.
2.7 Matrix Algebra and Linear Transformation.
2.8 Digital Signals.
2.9 Exercises.
2.10 References.
3. Fourier Analysis.
3.1 Fourier Series.
3.2 Rectified Sine Wave.
3.3 Fourier Transform.
3.4 Properties of Fourier Transform.
3.5 Examples of Fourier Transform.
3.6 Poisson's Sum and Partition of ZUnity.
3.7 Sampling Theorem.
3.8 Partial Sum and Gibb's Phenomenon.
3.9 Fourier Analysis of Discrete-Time Signals.
3.10 Discrete Fourier Transform (DFT).
3.11 Exercise.
3.12 References.
4. Time-Frequency Analysis.
4.1 Window Function.
4.2 Short-Time Fourier Transform.
4.3 Discrete Short-Time Fourier Transform.
4.4 Discrete Gabor Representation.
4.5 Continuous Wavelet Transform.
4.6 Discrete Wavelet Transform.
4.7 Wavelet Series.
4.8 Interpretations of the Time-Frequency Plot.
4.9 Wigner-Ville Distribution.
4.10 Properties of Wigner-Ville Distribution.
4.11 Quadratic Superposition Principle.
4.12 Ambiguity Function.
4.13 Exercise.
4.14 Computer Programs.
4.15 References.
5. Multiresolution Anaylsis.
5.1 Multiresolution Spaces.
5.2 Orthogonal, Biothogonal, and Semiorthogonal
Decomposition.
5.3 Two-Scale Relations.
5.4 Decomposition Relation.
5.5 Spline Functions and Properties.
5.6 Mapping a Function into MRA Space.
5.7 Exercise.
5.8 Computer Programs.
5.9 References.
6. Construction of Wavelets.
6.1 Necessary Ingredients for Wavelet Construction.
6.2 Construction of Semiorthogonal Spline Wavelets.
6.3 Construction of Orthonormal Wavelets.
6.4 Orthonormal Scaling Functions.
6.5 Construction of Biothogonal Wavelets.
6.6 Graphical Display of Wavelet.
6.7 Exercise.
6.8 Computer Programs.
6.9 References.
7. DWT and Filter Bank Algorithms.
7.1 Decimation and Interpolation.
7.2 Signal Representation in the Approximation Subspace.
7.3 Wavelet Decomposition Algorithm.
7.4 Reconstruction Algorithm.
7.5 Change of Bases.
7.6 Signal Reconstruction in Semiorthogonal Subspaces.
7.7 Examples.
7.8 Two-Channel Perfect Reconstruction Filter Bank.
7.9 Polyphase Representation for Filter Banks.
7.10 Comments on DWT and PR Filter Banks.
7.11 Exercise.
7.12 Computer Program.
7.13 References.
8. Special Topics in Wavelets and Algorithms.
8.1 Fast Integral Wavelet Transform.
8.2 Ridgelet Transform.
8.3 Curvelet Transform.
8.4 Complex Wavelets.
8.5 Lifting Wavelet transform.
8.6 References.
9. Digital Signal Processing Applications.
9.1 Wavelet Packet.
9.2 Wavelet-Packet Algorithms.
9.3 Thresholding.
9.4 Interference Suppression.
9.5 Faulty Bearing Signature Identification.
9.6 Two-Dimensional Wavelets and Wavelet Packets.
9.7 Edge Detection.
9.8 Image Compression.
9.9 Microcalcification Cluster Detection.
"This book provides a thorough treatment of wavelet theory and is
very convenient for graduate students and researchers in electrical
engineering, physics, and applied mathematics." (Zentralblatt MATH,
2011)
Erscheint lt. Verlag | 16.11.2010 |
---|---|
Reihe/Serie | Wiley Series in Microwave and Optical Engineering | Wiley Series in Microwave and Optical Engineering |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Mathematics • Mathematik • Numerical Methods & Algorithms • Numerische Methoden u. Algorithmen • Signal Processing • Signalverarbeitung • Wavelet • Wavelets |
ISBN-10 | 0-470-92697-X / 047092697X |
ISBN-13 | 978-0-470-92697-0 / 9780470926970 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 12,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich