Nicht aus der Schweiz? Besuchen Sie lehmanns.de
A First Course in Differential Equations - J. David Logan

A First Course in Differential Equations

(Autor)

Buch | Softcover
404 Seiten
2012 | Softcover reprint of hardcover 2nd ed. 2011
Springer-Verlag New York Inc.
978-1-4614-2722-3 (ISBN)
CHF 89,80 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This concise, up-to-date textbook is designed for the standard sophomore course in differential equations. The basic ideas, models, and solution methods are presented in a user friendly format that is accessible to engineers, scientists, economists, and mathematics majors.
This concise and up-to-date textbook is designed for the standard sophomore course in differential equations. It treats the basic ideas, models, and solution methods in a user friendly format that is accessible to engineers, scientists, economists, and mathematics majors. It emphasizes analytical, graphical, and numerical techniques, and it provides the tools needed by students to continue to the next level in applying the methods to more advanced problems. There is a strong connection to applications with motivations in mechanics and heat transfer, circuits, biology, economics, chemical reactors, and other areas. Moreover, the text contains a new, elementary chapter on systems of differential equations, both linear and nonlinear, that introduces key ideas without matrix analysis. Two subsequent chapters treat systems in a more formal way. Briefly, the topics include: First-order equations: separable, linear, autonomous, and bifurcation phenomena; Second-order linear homogeneous and non-homogeneous equations; Laplace transforms; and Linear and nonlinear systems, and phase plane properties.

J. David Logan is Willa Cather Professor of Mathematics at the University of Nebraska Lincoln. His extensive research is in the areas of theoretical ecology, hydrogeology, combustion, mathematical physics, and partial differential equations. He is the author of six textbooks on applied mathematics and its applications, including Applied Partial Differential Equations, 2nd edition (Springer 2004) and Transport Modeling in Hydrogeochemical Systems (Springer 2001).

Preface to the Second Edition.- To the Student.- 1. Differential Equations and Models.- 1.1 Introduction.- 1.2 General Terminology.- 1.2.1 Geometrical Interpretation.- 1.3 Pure Time Equations.- 1.4 Mathematical Models.- 1.4.1 Particle Dynamics.- 1.5 Separation of Variables.- 1.6 Autonomous Differential Equations.- 1.7 Stability and Bifurcation 1.8 Reactors and Circuits.- 1.8.1 Chemical Reactors.- 1.8.2 Electrical Circuits 2. Linear Equations and Approximations.- 2.1 First-Order Linear Equations.- 2.2 Approximation of Solutions.- 2.2.1 Picard Iteration*.- 2.2.2 Numerical Methods.- 2.2.3 Error Analysis.- 3. Second-Order Differential Equations.- 3.1 Particle Mechanics 3.2 Linear Equations with Constant Coefficients.- 3.3 The Nonhomogeneous Equation 3.3.1 Undetermined Coefficients.- 3.3.2 Resonance.- 3.4 Variable Coefficients.- 3.4.1 Cauchy-Euler Equation.- 3.4.2 Power Series Solutions*.- 3.4.3 Reduction of Order*.- 3.4.4 Variation of Parameters.- 3.5 Boundary Value Problems and Heat Flow*.- 3.6 Higher-Order Equations.- 3.7 Summary and Review.- 4. Laplace Transforms.- 4.1 Definition and Basic Properties.- 4.2 Initial Value Problems.- 4.3 The Convolution Property.- 4.4 Discontinuous Sources.- 4.5 Point Sources.- 4.6 Table of Laplace Transforms.- 5. Systems of Differential Equations.- 5.1 Linear Systems.- 5.2 Nonlinear Models.- 5.3 Applications.- 5.3.1 The Lotka-Volterra Model.- 5.3.2 Models in Ecology.- 5.3.3 An Epidemic Model.- 5.4 Numerical Methods.- 6. Linear Systems.- 6.1 Linearization and Stability.- 6.2 Matrices*.- 6.3 Two-Dimensional Linear Systems.- 6.3.1 Solutions and Linear Orbits.- 6.3.2 The Eigenvalue Problem.- 6.3.3 Real Unequal Eigenvalues.- 6.3.4 Complex Eigenvalues.- 6.3.5 Real, Repeated Eigenvalues.- 6.3.6 Stability.- 6.4 Nonhomogeneous Systems*.- 6.5 Three-Dimensional Systems*.- 7. Nonlinear Systems.- 7.1 Linearization Revisited.- 7.1.1 Malaria*.- 7.2 Periodic Solutions.- 7.2.1 The Poincar'e-Bendixson Theorem.- Appendix A. References.- Appendix B. Computer Algebra Systems.- B.1 Maple.- B.2 MATLAB.- Appendix C. Sample Examinations.- D. Index.-

Reihe/Serie Undergraduate Texts in Mathematics ; .
Zusatzinfo 1 black & white tables, biography
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Gewicht 567 g
Einbandart Paperback
Themenwelt Mathematik / Informatik Mathematik Analysis
Schlagworte Laplace Transforms • Mathematical Modelling • Nonlinear Systems • Ordinary differential equations • Phase plane phenomena • Second-order differential equations • Two-dimensional linear systems
ISBN-10 1-4614-2722-3 / 1461427223
ISBN-13 978-1-4614-2722-3 / 9781461427223
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
CHF 109,95