Template Matching Techniques in Computer Vision (eBook)
348 Seiten
John Wiley & Sons (Verlag)
978-0-470-74404-8 (ISBN)
research topic in the computer vision community. Within this
area, face recognition and interpretation has attracted increasing
attention owing to the possibility of unveiling human perception
mechanisms, and for the development of practical biometric systems.
This book and the accompanying website, focus on template matching,
a subset of object recognition techniques of wide applicability,
which has proved to be particularly effective for face recognition
applications. Using examples from face processing tasks throughout
the book to illustrate more general object recognition approaches,
Roberto Brunelli:
* examines the basics of digital image formation, highlighting
points critical to the task of template matching;
* presents basic and advanced template matching
techniques, targeting grey-level images, shapes and point
sets;
* discusses recent pattern classification paradigms from a
template matching perspective;
* illustrates the development of a real face recognition
system;
* explores the use of advanced computer graphics techniques in
the development of computer vision algorithms.
Template Matching Techniques in Computer Vision is
primarily aimed at practitioners working on the development of
systems for effective object recognition such as biometrics, robot
navigation, multimedia retrieval and landmark detection. It is also
of interest to graduate students undertaking studies in these
areas.
Roberto Brunelli, Senior Researcher, ITC-irst, Italy Roberto Brunelli is currently working for ITC-irst for the Technologies of Vision Research Line of Interactive Sensory Systems Division. He has held this post since 1987 after gaining his degree in Physics from the University of Trento (Italy). His research activities and interests are in the areas of computer vision tools, analysis of aerial images, the development of algorithms for the compressed description of binary images, optimization, neural networks, face analysis, video analysis and image retrieval. Dr Brunelli's research projects have been implemented in several EU funded projects, and he has also undertaken teaching assignments at the International Doctorate School of the University of Trento. He has written over 30 published journal and conference papers, several of which deal with computational face perception. The paper 'Template Matching: Matched Spatial Filters and Beyond' received a Pattern Recognition Society Award in 1998. He has acted as a referee for some of the major journals on image processing and related techniques, for example Computer Vision and Image Understanding and IEEE Transactions on Image Processing, and has also been on the Technical Committee for several conferences, including Audio- and Video-Based Biometric Person Authentication, IEEE Conference on Computer Vision and Pattern Recognition and European Conference on Computer Vision.
Preface
1 Introduction
1.1 Template Matching and Computer Vision
1.2 The Book
1.3 Bibliographical Remarks
References
2 The Imaging Process
2.1 Image Creation
2.2 Biological Eyes
2.3 Digital Eyes
2.4 Digital Image Representations
2.5 Bibliographical Remarks
References
3 Template Matching as Testing
3.1 Detection and Estimation
3.2 Hypothesis Testing
3.3 An Important Example
3.4 A Signal Processing Perspective: Matched Filters
3.5 Pattern Variability and the Normalized Correlation Coefficient
3.6 Estimation
3.7 Bibliographical Remarks
References
4 Robust Similarity Estimators
4.1 Robustness Measures
4.2 M-estimators
4.3 L1 Similarity Measures
4.4 Robust Estimation of Covariance Matrices
4.5 Bibliographical Remarks
References
5 Ordinal Matching Measures
5.1 Ordinal Correlation Measures
5.2 Non-parametric Local Transforms
5.3 Bibliographical Remarks
References
6 Matching Variable Patterns
6.1 Multiclass Synthetic Discriminant Functions
6.2 Advanced Synthetic Discriminant Functions
6.3 Non-orthogonal Image Expansion
6.4 Bibliographical Remarks
References
7 Matching Linear Structure: The Hough Transform
7.1 Getting Shapes: Edge Detection
7.2 The Radon Transform
7.3 The Hough Transform: Line and Circle Detection
7.4 The Generalized Hough Transform
7.5 Bibliographical Remarks
References
8 Low-dimensionality Representations and Matching
8.1 Principal Components
8.2 A Nonlinear Approach: Kernel PCA
8.3 Independent Components
8.4 Linear Discriminant Analysis
8.5 A Sample Application: Photographic-quality Facial Composites
8.6 Bibliographical Remarks
References
9 Deformable Templates
9.1 A Dynamic Perspective on the Hough Transform
9.2 Deformable Templates
9.3 Active Shape Models
9.4 Diffeomorphic Matching
9.5 Bibliographical Remarks
References
10 Computational Aspects of Template Matching
10.1 Speed
10.2 Precision
10.3 Bibliographical Remarks
References
11 Matching Point Sets: The Hausdorff Distance
11.1 Metric Pattern Spaces
11.2 Hausdorff Matching
11.3 Efficient Computation of the Hausdorff Distance
11.4 Partial Hausdorff Matching
11.5 Robustness Aspects
11.6 A Probabilistic Perspective
11.7 Invariant Moments
11.8 Bibliographical Remarks
References
12 Support Vector Machines and Regularization Networks
12.1 Learning and Regularization
12.2 RBF Networks
12.3 Support Vector Machines
12.4 Bibliographical Remarks
References
13 Feature Templates
13.1 Detecting Templates by Features
13.2 Parametric Feature Manifolds
13.3 Multiclass Pattern Rejection
13.4 Template Features
13.5 Bibliographical Remarks
References
14 Building a Multibiometric System
14.1 Systems
14.2 The Electronic Librarian
14.3 Score Integration
14.4 Rejection
14.5 Bibliographical Remarks
References
Appendices
A AnImAl: A Software Environment for Fast Prototyping
A.1 AnImAl: An Image Algebra
A.2 Image Representation and Processing Abstractions
A.3 The AnImAl Environment
A.4 Bibliographical Remarks
References
B Synthetic Oracles for Algorithm Development
B.1 Computer Graphics
B.2 Describing Reality: Flexible Rendering Languages
B.3 Bibliographical Remarks
References
C On Evaluation
C.1 A Note on Performance Evaluation
C.2 Training a Classifier
C.3 Analyzing the Performance of a Classifier
C.4 Evaluating a Technology
C.5 Bibliographical Remarks
References
Index
Erscheint lt. Verlag | 29.4.2009 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Bildgebende Systeme u. Verfahren • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Imaging Systems & Technology • Signal Processing • Signalverarbeitung |
ISBN-10 | 0-470-74404-9 / 0470744049 |
ISBN-13 | 978-0-470-74404-8 / 9780470744048 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich