Fractal Geometry, Complex Dimensions and Zeta Functions (eBook)
XXVI, 570 Seiten
Springer New York (Verlag)
978-1-4614-2176-4 (ISBN)
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.
Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.Key Features of this Second Edition:The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal stringsComplex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectraExplicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractalExamples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formulaThe method of Diophantine approximation is used to study self-similar strings and flows Analytical and geometric methodsare used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functionsThroughout, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions, Second Edition will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics.
Preface.- Overview.- Introduction.- 1. Complex Dimensions of Ordinary Fractal Strings.- 2. Complex Dimensions of Self-Similar Fractal Strings.- 3. Complex Dimensions of Nonlattice Self-Similar Strings.- 4. Generalized Fractal Strings Viewed as Measures.- 5. Explicit Formulas for Generalized Fractal Strings.- 6. The Geometry and the Spectrum of Fractal Strings.- 7. Periodic Orbits of Self-Similar Flows.- 8. Fractal Tube Formulas.- 9. Riemann Hypothesis and Inverse Spectral Problems.- 10. Generalized Cantor Strings and their Oscillations.- 11. Critical Zero of Zeta Functions.- 12 Fractality and Complex Dimensions.- 13. Recent Results and Perspectives.- Appendix A. Zeta Functions in Number Theory.- Appendix B. Zeta Functions of Laplacians and Spectral Asymptotics.- Appendix C. An Application of Nevanlinna Theory.- Bibliography.- Author Index.- Subject Index.- Index of Symbols.- Conventions.- Acknowledgements.
Erscheint lt. Verlag | 20.9.2012 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics | Springer Monographs in Mathematics |
Zusatzinfo | XXVI, 570 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | cantor strings • complex dimensions • fractality • inverse spectral problems • minkowski measurability • nonlattice self-similar strings • Partial differential equations • Riemann hypothesis • self-similar flows • tubular neighborhoods |
ISBN-10 | 1-4614-2176-4 / 1461421764 |
ISBN-13 | 978-1-4614-2176-4 / 9781461421764 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich