Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The DATA Bonanza – Improving Knowledge Discovery in Science, Engineering, and Business - M Atkinson

The DATA Bonanza – Improving Knowledge Discovery in Science, Engineering, and Business

M Atkinson (Autor)

Software / Digital Media
576 Seiten
2013
John Wiley & Sons Inc (Hersteller)
978-1-118-54034-3 (ISBN)
CHF 144,90 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
This book presents the most up-to-date opportunities and challenges emerging in knowledge discovery, helping readers develop the technical skills to design and develop data-intensive methods and processes. Offering an introduction to the current R and D efforts worldwide, the book includes examples and case studies with strategies for addressing a wide variety of data-intensive challenges. The book includes a discussion of the DISPEL language, its development, enactment, and applications as well as data-intensive beacons of success, focusing on methods in astronomy, interactive interpretation of environment data, and data-driven research in humanities. A must-have resource for researchers in industry, governmental organizations, and academia.

MALCOLM ATKINSON, PhD, is Professor of e-Science in the School of Informatics at the University of Edinburgh in Scotland. He is also Data-Intensive Research Group leader, Director of the e-Science Institute, IT architect for the ADMIRE and VERCE EU projects and UK e-Science Envoy. Professor Atkinson has been leading research projects for several decades and served on many advisory bodies.

CONTRIBUTORS xv FOREWORD xvii PREFACE xix THE EDITORS xxix PART I STRATEGIES FOR SUCCESS IN THE DIGITAL-DATA REVOLUTION 1 1. The Digital-Data Challenge 5 Malcolm Atkinson and Mark Parsons 1.1 The Digital Revolution / 5 1.2 Changing How We Think and Behave / 6 1.3 Moving Adroitly in this Fast-Changing Field / 8 1.4 Digital-Data Challenges Exist Everywhere / 8 1.5 Changing How We Work / 9 1.6 Divide and Conquer Offers the Solution / 10 1.7 Engineering Data-to-Knowledge Highways / 12 References / 13 2. The Digital-Data Revolution 15 Malcolm Atkinson 2.1 Data, Information, and Knowledge / 16 2.2 Increasing Volumes and Diversity of Data / 18 2.3 Changing the Ways We Work with Data / 28 References / 33 3. The Data-Intensive Survival Guide 37 Malcolm Atkinson 3.1 Introduction: Challenges and Strategy / 38 3.2 Three Categories of Expert / 39 3.3 The Data-Intensive Architecture / 41 3.4 An Operational Data-Intensive System / 42 3.5 Introducing DISPEL / 44 3.6 A Simple DISPEL Example / 45 3.7 Supporting Data-Intensive Experts / 47 3.8 DISPEL in the Context of Contemporary Systems / 48 3.9 Datascopes / 51 3.10 Ramps for Incremental Engagement / 54 3.11 Readers' Guide to the Rest of This Book / 56 References / 58 4. Data-Intensive Thinking with DISPEL 61 Malcolm Atkinson 4.1 Processing Elements / 62 4.2 Connections / 64 4.3 Data Streams and Structure / 65 4.4 Functions / 66 4.5 The Three-Level Type System / 72 4.6 Registry, Libraries, and Descriptions / 81 4.7 Achieving Data-Intensive Performance / 86 4.8 Reliability and Control / 108 4.9 The Data-to-Knowledge Highway / 116 References / 121 PART II DATA-INTENSIVE KNOWLEDGE DISCOVERY 123 5. Data-Intensive Analysis 127 Oscar Corcho and Jano van Hemert 5.1 Knowledge Discovery in Telco Inc. / 128 5.2 Understanding Customers to Prevent Churn / 130 5.3 Preventing Churn Across Multiple Companies / 134 5.4 Understanding Customers by Combining Heterogeneous Public and Private Data / 137 5.5 Conclusions / 144 References / 145 6. Problem Solving in Data-Intensive Knowledge Discovery 147 Oscar Corcho and Jano van Hemert 6.1 The Conventional Life Cycle of Knowledge Discovery / 148 6.2 Knowledge Discovery Over Heterogeneous Data Sources / 155 6.3 Knowledge Discovery from Private and Public, Structured and Nonstructured Data / 158 6.4 Conclusions / 162 References / 162 7. Data-Intensive Components and Usage Patterns 165 Oscar Corcho 7.1 Data Source Access and Transformation Components / 166 7.2 Data Integration Components / 172 7.3 Data Preparation and Processing Components / 173 7.4 Data-Mining Components / 174 7.5 Visualization and Knowledge Delivery Components / 176 References / 178 8. Sharing and Reuse in Knowledge Discovery 181 Oscar Corcho 8.1 Strategies for Sharing and Reuse / 182 8.2 Data Analysis Ontologies for Data Analysis Experts / 185 8.3 Generic Ontologies for Metadata Generation / 188 8.4 Domain Ontologies for Domain Experts / 189 8.5 Conclusions / 190 References / 191 PART III DATA-INTENSIVE ENGINEERING 193 9. Platforms for Data-Intensive Analysis 197 David Snelling 9.1 The Hourglass Reprise / 198 9.2 The Motivation for a Platform / 200 9.3 Realization / 201 References / 201 10. Definition of the DISPEL Language 203 Paul Martin and Gagarine Yaikhom 10.1 A Simple Example / 204 10.2 Processing Elements / 205 10.3 Data Streams / 213 10.4 Type System / 217 10.5 Registration / 222 10.6 Packaging / 224 10.7 Workflow Submission / 225 10.8 Examples of DISPEL / 227 10.9 Summary / 235 References / 236 11. DISPEL Development 237 Adrian Mouat and David Snelling 11.1 The Development Landscape / 237 11.2 Data-Intensive Workbenches / 239 11.3 Data-Intensive Component Libraries / 247 11.4 Summary / 248 References / 248 12. DISPEL Enactment 251 Chee Sun Liew, Amrey Krause, and David Snelling 12.1 Overview of DISPEL Enactment / 251 12.2 DISPEL Language Processing / 253 12.3 DISPEL Optimization / 255 12.4 DISPEL Deployment / 266 12.5 DISPEL Execution and Control / 268 References / 273 PART IV DATA-INTENSIVE APPLICATION EXPERIENCE 275 13. The Application Foundations of DISPEL 277 Rob Baxter 13.1 Characteristics of Data-Intensive Applications / 277 13.2 Evaluating Application Performance / 280 13.3 Reviewing the Data-Intensive Strategy / 283 14. Analytical Platform for Customer Relationship Management 287 Maciej Jarka and Mark Parsons 14.1 Data Analysis in the Telecoms Business / 288 14.2 Analytical Customer Relationship Management / 289 14.3 Scenario 1: Churn Prediction / 291 14.4 Scenario 2: Cross Selling / 293 14.5 Exploiting the Models and Rules / 296 14.6 Summary: Lessons Learned / 299 References / 299 15. Environmental Risk Management 301 Ladislav Hluch'y, Ondrej Habala, Viet Tran, and Branislav ! Simo 15.1 Environmental Modeling / 302 15.2 Cascading Simulation Models / 303 15.3 Environmental Data Sources and Their Management / 305 15.4 Scenario 1: ORAVA / 309 15.5 Scenario 2: RADAR / 313 15.6 Scenario 3: SVP / 318 15.7 New Technologies for Environmental Data Mining / 321 15.8 Summary: Lessons Learned / 323 References / 325 16. Analyzing Gene Expression Imaging Data in Developmental Biology 327 Liangxiu Han, Jano van Hemert, Ian Overton, Paolo Besana, and Richard Baldock 16.1 Understanding Biological Function / 328 16.2 Gene Image Annotation / 330 16.3 Automated Annotation of Gene Expression Images / 331 16.4 Exploitation and Future Work / 341 16.5 Summary / 345 References / 346 17. Data-Intensive Seismology: Research Horizons 353 Michelle Galea, Andreas Rietbrock, Alessandro Spinuso, and Luca Trani 17.1 Introduction / 354 17.2 Seismic Ambient Noise Processing / 356 17.3 Solution Implementation / 358 17.4 Evaluation / 369 17.5 Further Work / 372 17.6 Conclusions / 373 References / 375 PART V DATA-INTENSIVE BEACONS OF SUCCESS 377 18. Data-Intensive Methods in Astronomy 381 Thomas D. Kitching, Robert G. Mann, Laura E. Valkonen, Mark S. Holliman, Alastair Hume, and Keith T. Noddle 18.1 Introduction / 381 18.2 The Virtual Observatory / 382 18.3 Data-Intensive Photometric Classification of Quasars / 383 18.4 Probing the Dark Universe with Weak Gravitational Lensing / 387 18.5 Future Research Issues / 392 18.6 Conclusions / 392 References / 393 19. The World at One's Fingertips: Interactive Interpretation of Environmental Data 395 Jon Blower, Keith Haines, and Alastair Gemmell 19.1 Introduction / 395 19.2 The Current State of the Art / 397 19.3 The Technical Landscape / 401 19.4 Interactive Visualization / 403 19.5 From Visualization to Intercomparison / 406 19.6 Future Development: The Environmental Cloud / 409 19.7 Conclusions / 411 References / 412 20. Data-Driven Research in the Humanities--the DARIAH Research Infrastructure 417 Andreas Aschenbrenner, Tobias Blanke, Christiane Fritze, andWolfgang Pempe 20.1 Introduction / 417 20.2 The Tradition of Digital Humanities / 420 20.3 Humanities Research Data / 422 20.4 Use Case / 426 20.5 Conclusion and Future Development / 429 References / 430 21. Analysis of Large and Complex Engineering and Transport Data 431 Jim Austin 21.1 Introduction / 431 21.2 Applications and Challenges / 432 21.3 The Methods Used / 434 21.4 Future Developments / 438 21.5 Conclusions / 439 References / 440 22. Estimating Species Distributions--Across Space, Through Time, and with Features of the Environment 441 Steve Kelling, Daniel Fink, Wesley Hochachka, Ken Rosenberg, Robert Cook, Theodoros Damoulas, Claudio Silva, and William Michener 22.1 Introduction / 442 22.2 Data Discovery, Access, and Synthesis / 443 22.3 Model Development / 448 22.4 Managing Computational Requirements / 449 22.5 Exploring and Visualizing Model Results / 450 22.6 Analysis Results / 452 22.7 Conclusion / 454 References / 456 PART VI THE DATA-INTENSIVE FUTURE 459 23. Data-Intensive Trends 461 Malcolm Atkinson and Paolo Besana 23.1 Reprise / 461 23.2 Data-Intensive Applications / 469 References / 476 24. Data-Rich Futures 477 Malcolm Atkinson 24.1 Future Data Infrastructure / 478 24.2 Future Data Economy / 485 24.3 Future Data Society and Professionalism / 489 References / 494 Appendix A: Glossary 499 Michelle Galea and Malcolm Atkinson Appendix B: DISPEL Reference Manual 507 Paul Martin Appendix C: Component Definitions 531 Malcolm Atkinson and Chee Sun Liew INDEX 537

Erscheint lt. Verlag 10.4.2013
Verlagsort New York
Sprache englisch
Maße 209 x 254 mm
Gewicht 2491 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Informatik Weitere Themen Hardware
Mathematik / Informatik Mathematik
ISBN-10 1-118-54034-4 / 1118540344
ISBN-13 978-1-118-54034-3 / 9781118540343
Zustand Neuware
Haben Sie eine Frage zum Produkt?