Current Algebras on Riemann Surfaces
New Results and Applications
Seiten
This monograph is an introduction into a new and fast developing field on the crossroads of infinite-dimensional Lie algebra theory and contemporary mathematical physics. It contains a self-consistent presentation of the theory of Krichever-Novikov algebras, Lax operator algebras, their interaction, representation theory, relations to moduli spaces of Riemann surfaces and holomorphic vector bundles on them, to Lax integrable systems, and conformal field theory. For beginners, the book provides a short way to join in the investigations in these fields. For experts, it sums up the recent advances in the theory of almost graded infinite-dimensional Lie algebras and their applications.The book may serve as a base for semester lecture courses on finite-dimensional integrable systems, conformal field theory, almost graded Lie algebras. Majority of results are presented for the first time in the form of monograph.
Oleg K. Sheinman, Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia;Independent University of Moscow, Russia.
Erscheint lt. Verlag | 14.9.2012 |
---|---|
Reihe/Serie | De Gruyter Expositions in Mathematics ; 58 |
Zusatzinfo | 6 b/w ill. |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 422 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | conformal field theory • Current Algebra • Current Algebra; Riemann Surface; Lax Integrable System; Conformal Field Theory • Integrable Systems • Krichever-Novikov algebras • Lax Integrable System • Lax operator algebras • Lie algebra • Riemannsche Flächen • Riemann surface |
ISBN-10 | 3-11-026396-3 / 3110263963 |
ISBN-13 | 978-3-11-026396-1 / 9783110263961 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich