A First Course in Noncommutative Rings
Springer-Verlag New York Inc.
978-1-4684-0408-1 (ISBN)
1. Wedderburn-Artin Theory.- §1. Basic terminology and examples.- §2. Semisimplicity.- §3. Structure of semisimple rings.- 2. Jacobson Radical Theory.- §4. The Jacobson radical.- §5. Jacobson radical under change of rings.- §6. Group rings and the J-semisimplicity problem.- 3. Introduction to Representation Theory.- §7. Modules over finite-dimensional algebras.- §8. Representations of groups.- §9. Linear groups.- 4. Prime and Primitive Rings.- §10. The prime radical; prime and semiprime rings.- §11. Structure of primitive rings; the Density Theorem.- §12. Subdirect products and commutativity theorems.- 5. Introduction to Division Rings.- §13. Division rings.- §14. Some classical constructions.- §15. Tensor products and maximal subfields.- §16. Polynomials over division rings.- 6. Ordered Structures in Rings.- §17. Orderings and preorderings in rings.- §18. Ordered division rings.- 7. Local Rings, Semilocal Rings, and Idempotents.- §19. Local rings.- §20. Semilocal rings.- §21. The theory of idempotents.- §22. Central idempotents and block decompositions.- 8. Perfect and Semiperfect Rings.- §23. Perfect and semiperfect rings.- §24. Homological characterizations of perfect and semiperfect rings.- §25. Principal indecomposables and basic rings.- References.- Name Index.
Reihe/Serie | Graduate Texts in Mathematics ; 131 |
---|---|
Zusatzinfo | XV, 397 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
ISBN-10 | 1-4684-0408-3 / 1468404083 |
ISBN-13 | 978-1-4684-0408-1 / 9781468404081 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich