Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Fractal Geometry and Number Theory - Michel L. Lapidus, Machiel Van Frankenhuysen

Fractal Geometry and Number Theory

Complex Dimensions of Fractal Strings and Zeros of Zeta Functions
Buch | Softcover
268 Seiten
2012 | Softcover reprint of the original 1st ed. 2000
Springer-Verlag New York Inc.
978-1-4612-5316-7 (ISBN)
CHF 74,85 inkl. MwSt
A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo- metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di- mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref- erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap- pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex- tension.
The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.

1 Complex Dimensions of Ordinary Fractal Strings.- 1.1 The Geometry of a Fractal String.- 1.2 The Geometric Zeta Function of a Fractal String.- 1.3 The Frequencies of a Fractal String and the Spectral Zeta Function.- 1.4 Higher-Dimensional Analogue: Fractal Sprays.- 2 Complex Dimensions of Self-Similar Fractal Strings.- 2.1 The Geometric Zeta Function of a Self-Similar String.- 2.2 Examples of Complex Dimensions of Self-Similar Strings.- 2.3 The Lattice and Nonlattice Case.- 2.4 The Structure of the Complex Dimensions.- 2.5 The Density of the Poles in the Nonlattice Case.- 2.6 Approximating a Fractal String and Its Complex Dimensions.- 3 Generalized Fractal Strings Viewed as Measures.- 3.1 Generalized Fractal Strings.- 3.2 The Frequencies of a Generalized Fractal String.- 3.3 Generalized Fractal Sprays.- 3.4 The Measure of a Self-Similar String.- 4 Explicit Formulas for Generalized Fractal Strings.- 4.1 Introduction.- 4.2 Preliminaries: The Heaviside Function.- 4.3 The Pointwise Explicit Formulas.- 4.4 The Distributional Explicit Formulas.- 4.5 Example: The Prime Number Theorem.- 5 The Geometry and the Spectrum of Fractal Strings.- 5.1 The Local Terms in the Explicit Formulas.- 5.2 Explicit Formulas for Lengths and Frequencies.- 5.3 The Direct Spectral Problem for Fractal Strings.- 5.4 Self-Similar Strings.- 5.5 Examples of Non-Self-Similar Strings.- 5.6 Fractal Sprays.- 6 Tubular Neighborhoods and Minkowski Measurability.- 6.1 Explicit Formula for the Volume of a Tubular Neighborhood.- 6.2 Minkowski Measurability and Complex Dimensions.- 6.3 Examples.- 7 The Riemann Hypothesis, Inverse Spectral Problems and Oscillatory Phenomena.- 7.1 The Inverse Spectral Problem.- 7.2 Complex Dimensions of Fractal Strings and the Riemann Hypothesis.- 7.3 Fractal Sprays and the Generalized Riemann Hypothesis.- 8 Generalized Cantor Strings and their Oscillations.- 8.1 The Geometry of a Generalized Cantor String.- 8.2 The Spectrum of a Generalized Cantor String.- 9 The Critical Zeros of Zeta Functions.- 9.1 The Riemann Zeta Function: No Critical Zeros in an Arithmetic Progression.- 9.2 Extension to Other Zeta Functions.- 9.3 Extension to L-Series.- 9.4 Zeta Functions of Curves Over Finite Fields.- 10 Concluding Comments.- 10.1 Conjectures about Zeros of Dirichlet Series.- 10.2 A New Definition of Fractality.- 10.3 Fractality and Self-Similarity.- 10.4 The Spectrum of a Fractal Drum.- 10.5 The Complex Dimensions as Geometric Invariants.- Appendices.- A Zeta Functions in Number Theory.- A.l The Dedekind Zeta Function.- A.3 Completion of L-Series, Functional Equation.- A.4 Epstein Zeta Functions.- A.5 Other Zeta Functions in Number Theory.- B Zeta Functions of Laplacians and Spectral Asymptotics.- B.l Weyl’s Asymptotic Formula.- B.2 Heat Asymptotic Expansion.- B.3 The Spectral Zeta Function and Its Poles.- B.4 Extensions.- B.4.1 Monotonic Second Term.- References.- Conventions.- Symbol Index.- List of Figures.- Acknowledgements.

Zusatzinfo XII, 268 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4612-5316-0 / 1461253160
ISBN-13 978-1-4612-5316-7 / 9781461253167
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten

von Christian Karpfinger

Buch | Softcover (2022)
Springer Spektrum (Verlag)
CHF 76,95