Foundations of Constructive Mathematics
Springer Berlin (Verlag)
978-3-642-68954-3 (ISBN)
One. Practice and Philosophy of Constructive Mathematics.- I. Examples of Constructive Mathematics.- II. Informal Foundations of Constructive Mathematics.- III. Some Different Philosophies of Constructive Mathematics.- IV. Recursive Mathematics: Living with Church's Thesis.- V. The Role of Formal Systems in Foundational Studies.- Two. Formal Systems of the Seventies.- VI. Theories of Rules.- VII. Readability.- VIII. Constructive Set Theories.- IX. The Existence Property in Constructive Set Theory.- X. Theories of Rules, Sets, and Classes.- XI. Constructive Type Theories.- Three. Metamathematical Studies.- XII. Constructive Models of Set Theory.- XIII. Proof-Theoretic Strength.- XIV. Some Formalized Metamathematics and Church's Rule.- XV. Forcing.- XVI. Continuity.- Four. Metaphilosophical Studies.- XVII. Theories of Rules and Proofs.- Historical Appendix.- 1. From Gauss to Zermelo: The Origins of Non-Constructive Mathematics.- 2. From Kant to Hilbert: Logic and Philosophy.- 3. Brouwer and the Dutch Intuitionists.- 4. Early Formal Systems for Intuitionism.- 5. Kleene: The Marriage of Recursion Theory and Intuitionism.- 6. The Russian Constructivists and Recursive Analysis.- 7. Model Theory of Intuitionistic Systems.- 8. Logical Studies of Intuitionistic Systems.- 9. Bishop and his Followers.- 10. The Latest Decade.- References.- Index of Axioms, Abbreviations, and Theories.- Index of Names.- Index of Symbols.
Erscheint lt. Verlag | 18.11.2011 |
---|---|
Reihe/Serie | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics |
Zusatzinfo | XXIII, 466 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 743 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Schlagworte | Cantor • Computability Theory • Computer • Computer Science • Development • EXIST • forcing • Mathematics • model Theory • organization • Philosophy • Proof • proof by contradiction • proving • set theory |
ISBN-10 | 3-642-68954-X / 364268954X |
ISBN-13 | 978-3-642-68954-3 / 9783642689543 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich