Rings of Quotients
Springer Berlin (Verlag)
978-3-642-66068-9 (ISBN)
Notations and Conventions.- I. Modules.-
1. Basic Definitions.-
2. Sums and Products of Modules.-
3. Finitely Generated Modules and Noetherian Modules.-
4. Categories and Functors.-
5. Exactness of Functors between Module Categories.-
6. Projective and Injective Modules.-
7. Semi-Simple Modules and Rings.-
8. Tensor Products.-
9. Bimodules.-
10. Flat Modules.-
11. Pure Submodules.-
12. Regular Rings.-
13. Coherent Rings.- Exercises.- II. Rings of Fractions.-
1. The Ring of Fractions.-
2. Orders in a Semi-Simple Ring.-
3. Modules of Fractions.-
4. Invertible Ideals and Hereditary Orders.- Exercises.- III. Modular Lattices.-
1. Lattices.-
2. Modularity.-
3. Lattices with Chain Condition.-
4. Distributive Lattices.-
5. Continuous Lattices.-
6. Pseudo-Complemented Lattices.-
7. Closure Operators.-
8. Galois Connections.- Exercises.- IV. Abelian Categories.-
1. Equivalence of Categories.-
2. Kernels and Cokernels.-
3. Products and Coproducts.-
4. Abelian Categories.-
5. Pullbacks and Pushouts.-
6. Generators and Cogenerators.-
7. Functor Categories.-
8. Limits and Colimits.-
9. Adjoint Functors.-
10. Morita Equivalence.- Exercises.- V. Grothendieck Categories.-
1. Exactness of Direct Limits.-
2. Injective Envelopes.-
3. Finitely Generated Objects.-
4. Locally Noetherian Categories.-
5. The Krull-Remak-Schmidt-Azumaya Theorem.-
6. Spectral Categories.-
7. The Spectral Category of a Grothendieck Category.- Exercises.- VI. Torsion Theory.-
1. Preradicals.-
2. Torsion Theories.-
3. Hereditary Torsion Theories.-
4. Linear Topologies.-
5. Gabriel Topologies.-
6. Examples of Gabriel Topologies.-
7. Stable Torsion.-
8. TTF-Classes.-
9. ?-Divisible Modules.- Exercises.- VII. Hereditary Torsion Theories for Noetherian Rings.-
1. Associated Prime Ideals.-
2. Fully Bounded Noetherian Rings.-
3. Topologies for a Fully Bounded Noetherian Ring.-
4. Artin-Rees Modules and Stable Topologies.-
5. Auxiliary Results on Commutative Localization.-
6. The Topologies ?Mn for a Commutative Noetherian Ring.- Exercises.- VIII. Simple Torsion Theories.-
1. The Jacobson Radical and Artinian Rings.-
2. Semi-Artinian Modules and Rings.-
3. Simple Torsion Theories.-
4. Semi-Perfect Rings.-
5. Perfect Rings.-
6. Hereditary Torsion Theories for a Perfect Ring.- Exercises.- IX. Rings and Modules of Quotients.-
1. Construction of Modules of Quotients.-
2. ?-Injective Envelopes.-
3. The Ring of Quotients is a Bicommutator.-
4. The Lattice of Saturated Submodules.-
5. ?-Invertible Ideals.- Exercises.- X. The Category of Modules of Quotients.-
1. Giraud Subcategories.-
2. Gabriel Topologies and Giraud Subcategories.-
3. Rings of Quotients of Morita Equivalent Rings.-
4. Representation of Grothendieck Categories.- Exercises.- XI. Perfect Localizations.-
1. Epimorphisms of Rings.-
2. Flat Epimorphisms of Rings.-
3. Perfect Gabriel Topologies.-
4. The Maximal Flat Epimorphic Ring of Quotients.-
5. The Maximal Ring of Quotients as a Perfect Localization.-
6. 1-Topologies and Rings of Fractions.-
7. Finite Localizations.-
8. The Endomorphism Ring of a Finitely Generated Projective Module.- Exercises.- XII. The Maximal Ring of Quotients of a Non-Singular Ring.-
1. Standard Representation of Spectral Categories.-
2. The Maximal Ring of Quotients.-
3. The Maximal Ring of Quotients of a Boolean Ring.-
4. The Lattice of EssentiallyClosed Ideals.-
5. The Maximal Ring of Quotients of a Reduced Ring.-
6. Flatness of the Maximal Ring of Quotients.-
7. Imbedding Non-Singular Modules in Free Modules.- Exercises.- XIII. Finiteness Conditions on Mod-(A, ?).-
1. Compact Lattices of Saturated Submodules.-
2. ?-Noetherian Rings.-
3. The Goldie Topology.-
4. P-Noetherian Rings.-
5. The Canonical Topology of a Krull Domain.- Exercises.- XIV. Self-Injective Rings.-
1. The Endomorphism Ring of an Injective Module.-
2. Self-Injective Rings and Annihilator Conditions.-
3. Quasi-Frobenius Rings.-
4. Self-Injective Maximal Rings of Quotients.- Exercises.- XV. Classical Rings of Quotients.-
1. Semi-Prime Ideals and the Prime Radical.-
2. Rings of Quotients of Quotient Rings.-
3. Orders in a Semi-Primary Ring.-
4. Noetherian Orders in an Artinian Ring.-
5. Orders in Self-Injective Rings.-
6. Rings of Quotients of Group Algebras.- Exercises.
Erscheint lt. Verlag | 22.12.2011 |
---|---|
Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
Zusatzinfo | 309 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 170 x 244 mm |
Gewicht | 560 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | Adjoint functor • Algebra • colimit • Coproduct • Prime • Quotientenring • Rings |
ISBN-10 | 3-642-66068-1 / 3642660681 |
ISBN-13 | 978-3-642-66068-9 / 9783642660689 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich