Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Microdifferential Systems in the Complex Domain - P. Schapira

Microdifferential Systems in the Complex Domain

(Autor)

Buch | Softcover
X, 216 Seiten
2011 | 1. Softcover reprint of the original 1st ed. 1985
Springer Berlin (Verlag)
978-3-642-64904-2 (ISBN)
CHF 74,85 inkl. MwSt
The words "microdifferential systems in the complex domain" refer to seve ral branches of mathematics: micro local analysis, linear partial differential equations, algebra, and complex analysis. The microlocal point of view first appeared in the study of propagation of singularities of differential equations, and is spreading now to other fields of mathematics such as algebraic geometry or algebraic topology. How ever it seems that many analysts neglect very elementary tools of algebra, which forces them to confine themselves to the study of a single equation or particular square matrices, or to carryon heavy and non-intrinsic formula tions when studying more general systems. On the other hand, many alge braists ignore everything about partial differential equations, such as for example the "Cauchy problem", although it is a very natural and geometri cal setting of "inverse image". Our aim will be to present to the analyst the algebraic methods which naturally appear in such problems, and to make available to the algebraist some topics from the theory of partial differential equations stressing its geometrical aspects. Keeping this goal in mind, one can only remain at an elementary level.

I. Microdifferential Operators.- Summary.-
1. Construction of the Ring ?x.- Exercises.-
2. Division Theorems.- Exercises.-
3. Refined Microdifferential Cauchy-Kowalewski Theorem.- Exercises.-
4. Microdifferential Modules Associated to a Submanifold.- Exercises.-
5. Quantized Contact Transformations.- Exercises.-
6. Systems with Simple Characteristics.- Exercises.- Notes.- II. ?X-modules.- Summary.-
1. Filtered Rings and Modules.- Exercises.-
2. Structure of the Ring ?X.- Exercises.-
3. Operations on ?X-modules.- Exercises.- Notes.- III. Cauchy Problem and Propagation.- Summary.-
1. Microcharacteristic Varieties.- Exercises.-
2. The Cauchy Problem.-
3. Propagation.- Exercises.-
4. Constructibility.- Exercises.- Notes.- Appendices.- A. Symplectic Geometry.- A.1. Symplectic Vector Spaces.- A.2. Symplectic Manifolds.- A.3. Homogeneous Symplectic Structures.- A.4. Contact Transformations.- B. Homological Algebra.- B.1. Categories and Derived Functors.- B.2. Rings and Modules.- B.3. Graded Rings and Modules.- B.4 Koszul Complexes.- B.5. The Mittag-Leffler Condition.- C. Sheaves.- C.1. Presheaves and Sheaves.- C.2. Cohomology of Sheaves.- C.3. ?ech Cohomology.- C.4. An Extension Theorem.- C.5. Coherent Sheaves.- D.1. Support and Multiplicities.- D.2. Homological Dimension.- List of Notations and Conversions.

Erscheint lt. Verlag 5.10.2011
Reihe/Serie Grundlehren der mathematischen Wissenschaften
Zusatzinfo X, 216 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 358 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Algebra • Algebraic Geometry • algebraic topology • Cauchy problem • cohomology • Complex Analysis • Dimension • Equation • Form • Geometry • Grad • Homological algebra • Sheaves • Systems • Vector Space
ISBN-10 3-642-64904-1 / 3642649041
ISBN-13 978-3-642-64904-2 / 9783642649042
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

Buch | Hardcover (2023)
Carl Hanser (Verlag)
CHF 23,75