Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Statistics and Data Analysis for Financial Engineering -  David Ruppert

Statistics and Data Analysis for Financial Engineering (eBook)

eBook Download: PDF
2010 | 1. Auflage
638 Seiten
Springer New York (Verlag)
978-1-4419-7787-8 (ISBN)
Systemvoraussetzungen
95,19 inkl. MwSt
(CHF 92,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<div style='MARGIN: 0in 0in 0pt; LINE-HEIGHT: normal'>Financial engineers have access to enormous quantities of data but need powerful methods for extracting quantitative information, particularly about volatility and risks. Key features of this textbook are: illustration of concepts with financial markets and economic data, R Labs with real-data exercises, and integration of graphical and analytic methods for modeling and diagnosing modeling errors. Despite some overlap with the author's undergraduate textbook <em>Statistics and Finance: An Introduction</em>, this book differs from that earlier volume in several important aspects: it is graduate-level; computations and graphics are done in R; and many advanced topics are covered, for example, multivariate distributions, copulas, Bayesian computations, VaR and expected shortfall, and cointegration. </div>
<div style='MARGIN: 0in 0in 0pt; LINE-HEIGHT: normal'>The prerequisites are basic statistics and probability, matrices and linear algebra, and calculus.</div>
<div style='MARGIN: 0in 0in 0pt; LINE-HEIGHT: normal'>Some exposure to finance is helpful.</div>

<div style='MARGIN: 0in 0in 0pt; LINE-HEIGHT: normal'>David Ruppert is Andrew Schultz, Jr., Professor of Engineering and Professor of Statistical Science, School of Operations Research and Information Engineering, Cornell University, where he teaches statistics and financial engineering and is a member of the Program in</div>
<div style='MARGIN: 0in 0in 0pt; LINE-HEIGHT: normal'>Financial Engineering. His research areas include asymptotic theory, semiparametric regression, functional data analysis, biostatistics, model calibration, measurement error, and astrostatistics. Professor Ruppert received his PhD in Statistics at Michigan State University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics and won the Wilcoxon prize. He is Editor of the <em>Electronic Journal of Statistics</em>, former Editor of the Institute of Mathematical Statistics' <em>Lecture Notes--Monographs Series</em>, and former Associate Editor of several major statistics journals. Professor Ruppert has published over 100 scientific papers and four books: <em>Transformation and Weighting in Regression</em>, <em>Measurement Error in Nonlinear Models</em>, <em>Semiparametric Regression</em>, and <em>Statistics and Finance: An Introduction</em>.</div> 
<div style="e;MARGIN: 0in 0in 0pt; LINE-HEIGHT: normal"e;>Financial engineers have access to enormous quantities of data but need powerful methods for extracting quantitative information, particularly about volatility and risks. Key features of this textbook are: illustration of concepts with financial markets and economic data, R Labs with real-data exercises, and integration of graphical and analytic methods for modeling and diagnosing modeling errors. Despite some overlap with the author's undergraduate textbook <em>Statistics and Finance: An Introduction</em>, this book differs from that earlier volume in several important aspects: it is graduate-level; computations and graphics are done in R; and many advanced topics are covered, for example, multivariate distributions, copulas, Bayesian computations, VaR and expected shortfall, and cointegration. </div><div style="e;MARGIN: 0in 0in 0pt; LINE-HEIGHT: normal"e;>The prerequisites are basic statistics and probability, matrices and linear algebra, and calculus.</div><div style="e;MARGIN: 0in 0in 0pt; LINE-HEIGHT: normal"e;>Some exposure to finance is helpful.</div>
Erscheint lt. Verlag 17.11.2010
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Wirtschaft Allgemeines / Lexika
Wirtschaft Betriebswirtschaft / Management Finanzierung
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-4419-7787-2 / 1441977872
ISBN-13 978-1-4419-7787-8 / 9781441977878
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 17,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich