Mathematical Logic and Model Theory (eBook)
194 Seiten
Springer London (Verlag)
978-1-4471-2176-3 (ISBN)
As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields.
The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4).
This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.
Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.
Erscheint lt. Verlag | 21.8.2011 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Technik | |
ISBN-10 | 1-4471-2176-7 / 1447121767 |
ISBN-13 | 978-1-4471-2176-3 / 9781447121763 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich