A Textbook of Graph Theory
Seiten
1999
Springer-Verlag New York Inc.
978-0-387-98859-7 (ISBN)
Springer-Verlag New York Inc.
978-0-387-98859-7 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Provides an introduction to graph theory, covering Dirac's theorem on k-connected graphs, Harary-Nashwilliam's theorem on the hamiltonicity of line graphs.
Here is a solid introduction to graph theory, covering Dirac's theorem on k-connected graphs, Harary-Nashwilliam's theorem on the hamiltonicity of line graphs, Toida-McKee's characterization of Eulerian graphs, Fournier's proof of Kuratowski's theorem on planar graphs, and more. The book does not presuppose deep knowledge of any branch of mathematics, but requires only the basics of mathematics.
Here is a solid introduction to graph theory, covering Dirac's theorem on k-connected graphs, Harary-Nashwilliam's theorem on the hamiltonicity of line graphs, Toida-McKee's characterization of Eulerian graphs, Fournier's proof of Kuratowski's theorem on planar graphs, and more. The book does not presuppose deep knowledge of any branch of mathematics, but requires only the basics of mathematics.
Basic Results.- Directed Graphs.- Connectivity.- Trees.- Independent Sets and Matchings.- Eulerian and Hamiltonian Graphs.- Graph Colourings.- Planarity.- Triangulated Graphs.- Applications.
Erscheint lt. Verlag | 1.1.2000 |
---|---|
Reihe/Serie | Universitext |
Zusatzinfo | 2 black & white illustrations |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 520 g |
Einbandart | gebunden |
Themenwelt | Mathematik / Informatik ► Mathematik ► Graphentheorie |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-387-98859-9 / 0387988599 |
ISBN-13 | 978-0-387-98859-7 / 9780387988597 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Numbers and Counting, Groups, Graphs, Orders and Lattices
Buch | Softcover (2023)
De Gruyter (Verlag)
CHF 89,95