Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben
Springer Berlin (Verlag)
978-3-540-66220-4 (ISBN)
1. Einführung.- 2. Optimalitätskriterien.- Aufgaben.- 3. Konvexe Funktionen.- Aufgaben.- 4. Ein allgemeines Abstiegsverfahren.- Aufgaben.- 5. Schrittweitenstrategien.- 5.1 Armijo-Regel.- 5.2 Wolfe-Powell-Schrittweitenstrategie.- 5.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 6. Schrittweitenalgorithmen.- 6.1 Armijo-Regel.- 6.2 Wolfe-Powell-Schrittweitenstrategie.- 6.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 7. Konvergenzraten und Charakterisierungen.- Aufgaben.- 8. Gradientenverfahren.- 8.1 Das Gradientenverfahren.- 8.2 Konvergenz bei quadratischer Zielfunktion.- 8.3 Gradientenähnliche Verfahren.- Aufgaben.- 9. Newton-Verfahren.- 9.1 Das lokale Newton-Verfahren.- 9.2 Ein globalisiertes Newton-Verfahren.- 9.3 Hinweise zur Implementation.- 9.4 Numerische Resultate.- Aufgaben.- 10. Inexakte Newton-Verfahren.- 10.1 Das lokale inexakte Newton-Verfahren.- 10.2 Ein globalisiertes inexaktes Newton-Verfahren.- 10.3 Hinweise zur Implementation.- 10.4 Numerische Resultate.- Aufgaben.- 11. Quasi-Newton-Verfahren.- 11.1 Herleitung einiger Quasi-Newton-Formeln.- 11.2 Lokale Konvergenz des PSB-Verfahrens.- 11.3 Lokale Konvergenz des BFGS-Verfahrens.- 11.4 Globalisierte Quasi-Newton-Verfahren.- 11.5 Konvergenz bei gleichmäßig konvexen Funktionen.- 11.6 Weitere Quasi-Newton-Formeln.- 11.7 Hinweise zur Implementation.- 11.8 Numerische Resultate.- Aufgaben.- 12. Limited Memory Quasi-Newton-Verfahren.- 12.1 Herleitung des Limited Memory BFGS-Verfahrens.- 12.2 Konvergenz bei gleichmäßig konvexen Funktionen.- 12.3 Hinweise zur Implementation.- 12.4 Numerische Resultate.- Aufgaben.- 13. CG-Verfahren.- 13.1 Das CG-Verfahren für lineare Gleichungssysteme.- 13.2 Das Fletcher-Reeves-Verfahren.- 13.3 Das Polak-Ribière-Verfahren.- 13.4 Ein modifiziertesPolak-Ribière-Verfahren.- 13.5 Weitere CG-Verfahren.- 13.6 Numerische Resultate.- Aufgaben.- 14. Trust-Region-Verfahren.- 14.1 Das Trust-Region-Teilproblem.- 14.2 Die KKT-Bedingungen.- 14.3 Eine exakte Penalty-Funktion.- 14.4 Zur Lösung des Trust-Region-Teilproblems.- 14.5 Trust-Region-Newton-Verfahren.- 14.6 Teilraum-Trust-Region-Newton-Verfahren.- 14.7 Inexakte Trust-Region-Newton-Verfahren.- 14.8 Trust-Region-Quasi-Newton-Verfahren.- 14.9 Numerische Resultate.- Aufgaben.- A. Grundlagen aus der mehrdimensionalen Analysis.- B. Grundlagen aus der linearen Algebra.- C. Testbeispiele.
lt;p>From the reviews:
"The book derives from different lectures given by the authors at the University of Hamburg. The authors consider only numerical methods for unconstrained optimization problems and assume the function to be minimized is continously differentiable. The book is clearly written and contains many examples. [..]" (H. Benker (Merseburg) - Zentralblatt MATH Database 0934.65062)
Erscheint lt. Verlag | 9.9.1999 |
---|---|
Reihe/Serie | Springer-Lehrbuch |
Zusatzinfo | XII, 350 S. 3 Abb. |
Verlagsort | Berlin |
Sprache | deutsch |
Maße | 155 x 235 mm |
Gewicht | 562 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | Analysis • Gradientenverfahren • Newton-Verfahren • Numerische Mathematik • Optimierung • Optimierungsverfahren • Quasi-Newton-Verfahren • unregistrierte Optimierung • wissenschaftliches Rechnen |
ISBN-10 | 3-540-66220-0 / 3540662200 |
ISBN-13 | 978-3-540-66220-4 / 9783540662204 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich