Sequence of Problems on Semigroups (eBook)
VI, 146 Seiten
Springer New York (Verlag)
978-1-4614-0430-9 (ISBN)
This text is highly recommended for us as supplementary material for 3 graduate level courses.
John W. Neuberger is a Regents Professor at the University of North Texas, Denton, TX. He received his PhD at 22 from the University of Texas, completing both undergraduate and graduate work in 6 years. Neuberger has been a strong advocate of the Moore (Socratic) method of teaching during his long career in mathematics and is well respected in the fields of PDEs, numerical analysis, functional analysis, real variables, superconductivity, and algebraic geometry. His motto is: 'when a man learns to teach himself, there is nothing more we can do for him.'
This text consists of a sequence of problems which develop a variety of aspects in the field of semigroupsof operators. Many of the problems are not found easily in other books. Written in the Socratic/Moore method, this is a problem book without the answers presented. To get the most out of the content requires high motivation from the reader to work out the exercises. The reader is given the opportunity to discover important developments of the subject and to quickly arrive at the point of independent research. The compactness of the volume and the reputation of the author lends this consider set of problems to be a 'classic' in the making. This text is highly recommended for us as supplementary material for 3 graduate level courses.
John W. Neuberger is a Regents Professor at the University of North Texas, Denton, TX. He received his PhD at 22 from the University of Texas, completing both undergraduate and graduate work in 6 years. Neuberger has been a strong advocate of the Moore (Socratic) method of teaching during his long career in mathematics and is well respected in the fields of PDEs, numerical analysis, functional analysis, real variables, superconductivity, and algebraic geometry. His motto is: "when a man learns to teach himself, there is nothing more we can do for him."
-Preface.-1. Introduction.-2. The idea of a semigroup.-3. Translation semigroups.-4. Linear continuous semigroups.-5.Strongly continuous linear semigroups.-6. An Application to the Heat Equation.-7. Some Problems in Analysis.-8.Semigroups of steepest descent.-9. Numerics of semigroups of steepest descent.-10. Nonlinear semigroups studied by linear methods.-11. Measures and linear extension of nonlinear semigroups.-12. Local semigroups and Lie generators.-13. Quasi-analyticity of semigroups.-14. Continuous Newton's method and semigroups-15. Generalized semigroups without forward uniqueness.-16. Semigroups of nonlinear contractions and monotone operators.-17. Notes.-18. References.
Erscheint lt. Verlag | 15.9.2011 |
---|---|
Reihe/Serie | Problem Books in Mathematics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Technik | |
Schlagworte | linear continuous semigroups • nonlinear semigroups • semigroups • semigroups and application to the heat equation • semigroups and probability |
ISBN-10 | 1-4614-0430-4 / 1461404304 |
ISBN-13 | 978-1-4614-0430-9 / 9781461404309 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 1,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich