Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Geometry Of The Octonions, The - Tevian Dray, Corinne A Manogue

Geometry Of The Octonions, The

Buch | Hardcover
228 Seiten
2015
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-4401-81-4 (ISBN)
CHF 165,85 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Describes rotations in three dimensions and in various symmetry groups. This title offers an introduction to the properties of the octonions, with emphasis on their geometric structure. It includes applications such as: the exceptional Lie groups, octonionic projective spaces, and applications to particle physics.
There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.

Introduction; Division Algebras; Rotations; Lorentz Transformations; Spinors; The Right Eigenvalue Problem; The Exceptional Jordan Algebra; The Jordan Eigenvalue Problem; Lie Groups and Lie Algebras; Exceptional Lie Groups; The Dirac Equation; Octonionic Projective Spaces.

Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 981-4401-81-1 / 9814401811
ISBN-13 978-981-4401-81-4 / 9789814401814
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich