Regularization Methods in Banach Spaces
Seiten
2012
De Gruyter (Verlag)
978-3-11-025524-9 (ISBN)
De Gruyter (Verlag)
978-3-11-025524-9 (ISBN)
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.
Thomas Schuster, Carl von Ossietzky Universität Oldenburg, Germany;Barbara Kaltenbacher, University of Stuttgart, Germany; Bernd Hofmann, Chemnitz University of Technology, Germany; Kamil S. Kazimierski, University of Bremen, Germany.
Erscheint lt. Verlag | 16.7.2012 |
---|---|
Reihe/Serie | Radon Series on Computational and Applied Mathematics ; 10 |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 633 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | Banach-Räume • Banach space • Banach Space; Iterative Method; Regularization Theory; Tikhonov Regularization • Banach spaces • Iterative Method • iterative methods • Regularization theory • Tikhonov regularization |
ISBN-10 | 3-11-025524-3 / 3110255243 |
ISBN-13 | 978-3-11-025524-9 / 9783110255249 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
CHF 55,95