Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Invitation to Morse Theory -  Liviu Nicolaescu

Invitation to Morse Theory (eBook)

eBook Download: PDF
2011 | 2. Auflage
XVI, 353 Seiten
Springer New York (Verlag)
978-1-4614-1105-5 (ISBN)
Systemvoraussetzungen
59,49 inkl. MwSt
(CHF 58,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds.
 
Some features of the second edition include added applications, such as  Morse theory and the curvature of  knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.

Liviu Nicolaescu is currently Professor of Mathematics at the University of Notre Dame.
This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology. The book is divided into three conceptually distinct parts. The first part contains the foundations of Morse theory. The second part consists of applications of Morse theory over the reals, while the last part describes the basics and some applications of complex Morse theory, a.k.a. Picard-Lefschetz theory. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The exposition is enhanced with examples, problems, and illustrations, and will be of interest to graduate students as well as researchers. The reader is expected to have some familiarity with cohomology theory and with the differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.

Liviu Nicolaescu is currently Professor of Mathematics at the University of Notre Dame.

Preface.- Notations and Conventions.- 1 Morse Functions.- 2 The Topology of Morse Functions.- 3 Applications.- 4 Morse-Smale Flows and Whitney Stratifications.- 5 Basics of Complex Morse Theory.- 6 Exercises and Solutions.- References.- Index

Erscheint lt. Verlag 2.12.2011
Reihe/Serie Universitext
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte Morse functions • Morse-Smale flows • Picard-Lefschetz theory • Surgery • Whitney stratifications
ISBN-10 1-4614-1105-X / 146141105X
ISBN-13 978-1-4614-1105-5 / 9781461411055
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich