Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Generalized Solutions of Operator Equations and Extreme Elements (eBook)

eBook Download: PDF
2011 | 2012
XXII, 202 Seiten
Springer New York (Verlag)
978-1-4614-0619-8 (ISBN)

Lese- und Medienproben

Generalized Solutions of Operator Equations and Extreme Elements - D.A. Klyushin, S.I. Lyashko, D.A. Nomirovskii, Yu.I. Petunin, Vladimir Semenov
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Abstract models for many problems in science and engineering take the form of an operator equation. The resolution of these problems often requires determining the existence and uniqueness of solutions to these equations. 'Generalized Solutions of Operator Equations and Extreme Elements' presents recently obtained results in the study of the generalized solutions of operator equations and extreme elements in linear topological spaces. The presented results offer new methods of identifying these solutions and studying their properties. These new methods involve the application of a priori estimations and a general topological approach to construct generalized solutions of linear and nonlinear operator equations. The monograph is intended for mathematicians, graduate students and researchers studying functional analysis, operator theory, and the theory of optimal control.
Abstract models for many problems in science and engineering take the form of an operator equation. The resolution of these problems often requires determining the existence and uniqueness of solutions to these equations. "e;Generalized Solutions of Operator Equations and Extreme Elements"e; presents recently obtained results in the study of the generalized solutions of operator equations and extreme elements in linear topological spaces. The presented results offer new methods of identifying these solutions and studying their properties. These new methods involve the application of a priori estimations and a general topological approach to construct generalized solutions of linear and nonlinear operator equations. The monograph is intended for mathematicians, graduate students and researchers studying functional analysis, operator theory, and the theory of optimal control.

Preface
1. Fundamental notions, general and auxiliary facts
2. Simplest schemes of generalized solution of linear operator equations
2.1. Strong generalized solution
2.2. Strong almost solution
2.3. Weak generalized solution
2.4. Weak almost solution
2.5. Unique existence of weak generalized solution
2.6. Relationship between weak and strong generalized solutions
3. A priori estimations for linear continuous operator
3.1. A priori inequalities
3.2. Generalized solution of operator equation in Banach spaces
3.3. Generalized solution of operator equation in locally convex topological spaces
3.4. Relationship between generalized solutions in Banach and locally convex topological spaces
4. Applications of the theory of generalized solvability of linear equations
4.1. Equations with Hilbert-Schmidt operator in Hilbert space L2(-,)
4.2. Generalized solution of infinite system of linear algebraic equations
4.3. Volterra Integral Equation of the First Kind
4.4. Statistics of random processes
4.5. Parabolic PDE in a connected domain
4.6. Parabolic PDE in a disconnected domain
5. Scheme of generalized solutions of linear operator equations
5.1. Generalized solution of linear operator equations in locally convex linear topological spaces
5.2. Examples of generalized solutions
5.3. Properties of generalized solutions in spaces E1, E2
6. Scheme of generalized solutions of nonlinear operator equations
6.1. Generalized solution of nonlinear operator equation
6.2. Almost solution of nonlinear operator equations
6.3. Unique existence of generalized solution
6.4. Correctness of generalized solutions
6.5. Pseudo-generalized and essentially generalized solutions
6.6. Embedding of space of pseudo-generalized solutions into space of generalized solutions
6.7. Examples of operators
6.8. Computation of generalized solution
7. Generalized extreme elements
7.1. Examples of generalized extreme elements
7.2. Generalized extreme elements for linear and positively homogeneous convex functional
7.3. Generalized extreme elements for general convex functional
7.4. Some remarks
Reference

Erscheint lt. Verlag 5.10.2011
Reihe/Serie Springer Optimization and Its Applications
Springer Optimization and Its Applications
Zusatzinfo XXII, 202 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Technik
ISBN-10 1-4614-0619-6 / 1461406196
ISBN-13 978-1-4614-0619-8 / 9781461406198
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich