Wave Equations in Higher Dimensions (eBook)
XXV, 295 Seiten
Springer Netherlands (Verlag)
978-94-007-1917-0 (ISBN)
In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativistic and relativistic quantum mechanics in terms of the theories presented in Part II. In particular, the Levinson theorem and the generalized hypervirial theorem in higher dimensions, the Schrödinger equation with position-dependent mass and the Kaluza-Klein theory in higher dimensions are investigated. In this context, the dependence of the energy levels on the dimension is shown. Finally, Part V contains conclusions, outlooks and an extensive bibliography.
Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equations in higher dimensions at an advanced level so as to put all current mathematical and physical concepts and techniques at the reader's disposal. A comprehensive description of quantum wave equations in higher dimensions and their broad range of applications in quantum mechanics is provided, which complements the traditional coverage found in the existing quantum mechanics textbooks and gives scientists a fresh outlook on quantum systems in all branches of physics. In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativistic and relativistic quantum mechanics in terms of the theories presented in Part II. In particular, the Levinson theorem and the generalized hypervirial theorem in higher dimensions, the Schrodinger equation with position-dependent mass and the Kaluza-Klein theory in higher dimensions are investigated. In this context, the dependence of the energy levels on the dimension is shown. Finally, Part V contains conclusions, outlooks and an extensive bibliography.
Part I (Introduction).- Part II (Theory). - 2. Special orthogonal groups (Introduction; Abstract groups;Orthogonal group SO(n); Tensor representations of the SO(n); /Gamma matrix groups; Spinor representations of the SO(n); Concluding remarks).- 3. Rotational symmetry and Schrödinger equation in N-dimensional space (Introduction; Rotation operator; Orbital angular momentum operators; The linear momentum operators;Radial momentum operator; Spherical harmonic polynomials; Schrödinger equation for a two-body system; Concluding remarks).- 4. Dirac equation in higher dimensions (Introduction; Dirac equation in N+1 dimensions; The radial equation; Application to hydrogen atom; Concluding remarks).- 5. Klein-Gordon equation in higher dimensions (Introduction; The Radial equation; Application to hydrogen atom; Concluding remarks).- Part III (Application in Non-relativistic Quantum Mechanics).- 6. Harmonic oscillator (Introduction; Exact solutions of harmonic oscillator; Recurrence relations for the radioal function; Realization of dynamic group SU(1, 1); Generalization to pseudoharmonic ooscillator; Position and momentum information entropy; Conclusions).- 7. Coulomb potential (Introduction; Exact solution; Shift operators; Mapping between Coulumb and harmonic oscillator radial functions; Realization of dynamic of dynamic group SU (1, 1); Generalization to Kratzer potential; Concluding remarks).- 8. Wave function ansatz method (Introduction; Sextic potential; Singular one-fraction power potential; Mixture potential; Non-polynomial potential; Screened Coulomb potential; Morse potential; Conclusions).- 9. Levinson theorem for Schrödinger equation (Introduction; Scattering states and phase shifts; Bound states; Sturm--Liouville theorem; Levinson theorem; Discussions; Conclusions).- 10. Generalized hypervirial theorem for Schrödinger equation (Introduction; Generalized Blanchard’s and Kramers’ recurrence relations; Applications to central potentials; Conclusions).- 11. Exact quantization rule and Langer modification (Introduction; WKB approximation; Exact quantization rule; Application to trigonometric Rosen-Morse potential; Proper quantization rule; Illustrations of proper quantization rule; Langer modification in D dimensions; Calculations of logarithmic derivatives of wavefunction; Conclusions).- 12. Schrödinger equation with position-dependent mass (Introduction; Formalism; Applications to harmonic oscillator and Coulomb potential; Conclusions).- Part IV (Application in Relativistic Quantum Mechanics).- 13. Dirac equation with Coulomb potential (Introduction; Exact solutions of hydrogen-like atoms; Analysis of eigenvalues; Generalization to the Dirac equation with Coulomb potential plus scalar potential; Concluding remarks).- 14. Klein-Gordon equation with Coulomb potential (Introduction; Eigenfunctions and eigenvalues; Analysis of eigenvalues; Generalization: Klein-Gordon equation with Coulomb plus scalar potential; Comparison theorem; Conclusions).- 15. Levinson theorem for Dirac equation (Introduction; Generalization Sturm-Liouville theorem; Number of bound states; Relativistic Levinson theorem; Discussions; Friedel Theorem; Comparison theorem; Conclusions).- 16. Generalized hypervirial theorem for Dirac equation (Introduction; Relativistic recurrence relation; Diagonal case; Conclusions).- 17. Kaluza-Klein theory (Introduction; (4+D) -dimensional Kaluza-Klein theories; Paritcle spectrum of Kaluza-Klein theories for ferminions; Warped extra dimensions; Conclusions).- PART V (Conclusions and Outlooks).- 18. Conclusions and outlooks.- Appendices.- References.- Index.
Erscheint lt. Verlag | 9.7.2011 |
---|---|
Zusatzinfo | XXV, 295 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Technik | |
Schlagworte | High dimension quantum theory • Higher dimensional quantum theory • hypervirial theorem high dimensions • Kaluza-Klein theory high dimensions • Levinson theorem • Quantum theory relativity combine • quantum wave equation • quantum wave equation high dimension • quantum wave equation higher dimension • quantum wave equations |
ISBN-10 | 94-007-1917-5 / 9400719175 |
ISBN-13 | 978-94-007-1917-0 / 9789400719170 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich