Nicht aus der Schweiz? Besuchen Sie lehmanns.de

The Pullback Equation for Differential Forms (eBook)

eBook Download: PDF
2011 | 2012
XI, 436 Seiten
Birkhäuser Boston (Verlag)
978-0-8176-8313-9 (ISBN)

Lese- und Medienproben

The Pullback Equation for Differential Forms - Gyula Csató, Bernard Dacorogna, Olivier Kneuss
Systemvoraussetzungen
128,39 inkl. MwSt
(CHF 125,40)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f.

 

In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ≤ k n-1. The present monograph provides the first comprehensive study of the equation.

 

The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge-Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1≤ k n-1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation.

 

The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars.


An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map f so that it satisfies the pullback equation: f*(g) = f. In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 = k = n-1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge-Morrey decomposition and to give several versions of the Poincare lemma. The core of the book discusses the case k = n, and then the case 1= k = n-1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Holder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Holder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serveas a valuable reference for researchers or a supplemental text for graduate courses or seminars.

Introduction.- Part I Exterior and Differential Forms.- Exterior Forms and the Notion of Divisibility.- Differential Forms.- Dimension Reduction.- Part II Hodge-Morrey Decomposition and Poincaré Lemma.- An Identity Involving Exterior Derivatives and Gaffney Inequality.- The Hodge-Morrey Decomposition.- First-Order Elliptic Systems of Cauchy-Riemann Type.- Poincaré Lemma.- The Equation div u = f.- Part III The Case k = n.- The Case f × g > 0.- The Case Without  Sign Hypothesis on f.- Part IV The Case 0 ≤ k ≤ n–1.- General Considerations on the Flow Method.- The Cases k = 0 and k = 1.- The Case k = 2.- The Case 3 ≤ k ≤ n–1.- Part V Hölder Spaces.- Hölder Continuous Functions.- Part VI Appendix.- Necessary Conditions.- An Abstract Fixed Point Theorem.- Degree Theory.- References.- Further Reading.- Notations.- Index. 

Erscheint lt. Verlag 12.11.2011
Reihe/Serie Progress in Nonlinear Differential Equations and Their Applications
Progress in Nonlinear Differential Equations and Their Applications
Zusatzinfo XI, 436 p.
Verlagsort Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte equivalence of differential forms • global Darboux theorem • Hodge decomposition • Hölder spaces • local Darboux theorem • matrix theory • Ordinary differential equations • Partial differential equations • Poincaré lemma • pullback equation
ISBN-10 0-8176-8313-5 / 0817683135
ISBN-13 978-0-8176-8313-9 / 9780817683139
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich