Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Equidistribution in Number Theory, An Introduction (eBook)

eBook Download: PDF
2007
XV, 345 Seiten
Springer Netherlands (Verlag)
978-1-4020-5404-4 (ISBN)

Lese- und Medienproben

Equidistribution in Number Theory, An Introduction -
Systemvoraussetzungen
362,73 inkl. MwSt
(CHF 349,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This set of lectures provides a structured introduction to the concept of equidistribution in number theory. This concept is of growing importance in many areas, including cryptography, zeros of L-functions, Heegner points, prime number theory, the theory of quadratic forms, and the arithmetic aspects of quantum chaos.

The volume brings together leading researchers from a range of fields who reveal fascinating links between seemingly disparate areas.


From July 11th to July 22nd, 2005, a NATO advanced study institute, as part of the series "e;Seminaire ' de mathematiques ' superieures"e;, ' was held at the U- versite ' de Montreal, ' on the subject Equidistribution in the theory of numbers. There were about one hundred participants from sixteen countries around the world. This volume presents details of the lecture series that were given at the school. Across the broad panorama of topics that constitute modern number t- ory one nds shifts of attention and focus as more is understood and better questions are formulated. Over the last decade or so we have noticed incre- ing interest being paid to distribution problems, whether of rational points, of zeros of zeta functions, of eigenvalues, etc. Although these problems have been motivated from very di?erent perspectives, one nds that there is much in common, and presumably it is healthy to try to view such questions as part of a bigger subject. It is for this reason we decided to hold a school on "e;Equidistribution in number theory"e; to introduce junior researchers to these beautiful questions, and to determine whether di?erent approaches can in uence one another. There are far more good problems than we had time for in our schedule. We thus decided to focus on topics that are clearly inter-related or do not requirealotofbackgroundtounderstand.

Preface. Contributors.- Biographical Sketches of the Lecturers. Uniform Distribution; A. Granville and Z. Rudnick.-1. Uniform Distribution mod One.2. Fractional Parts of an2 .3. Uniform Distribution mod N.4. Normal Numbers. Sieving and the Erdos—Kac Theorem; A. Granville and K. Soundararajan.- Uniform Distribution, Exponential Sums, and Cryptography; J. B. Friedlander .- 1 Randomness and Pseudorandomness. 2 Uniform Distribution and Exponential Sums. 3. Exponential Sums and Cryptography. 4. Some Exponential Sum Bounds. 5. General Modulus and Discrepancy of Diffie—Hellman Triples. 6. Pseudorandom Number Generation. 7 Large Periods and the Carmichael Function. 8 Exponential Sums to General Modulus. 9. Sums over Elliptic Curves. 10 Proof Sketch of Theorem 4.1.- The Distribution of Prime Numbers; K. Soundararajan.- 1. The Cramer Model and Gaps Between Consecutive Primes. 2 The Distribution of Primes in Longer Intervals. 3 Maier’s Method and an "Uncertainty Principle" .- Torsion Points on Curves; A. Granville and Z. Rudnick.- 1. Introduction. 2. A Proof Using Galois Theory. 3. Polynomials Vanishing at Roots of Unity. The distribution of roots of a polynomial; A. Granville.- 1. Introduction. 2 Algebraic Numbers. 3 In k Dimensions: the Bilu Equidistribution Theorem. 4. Lower Bounds on Heights. 5. Compact Sets with Minimal Energy.- Manin—Mumford, André—Oort, the Equidistribution Point of View; Emmanuel Ullmo.- 1 Introduction.2 Informal Examples of Equi-Distribution.3. The Manin—Mumford and the André—Oort Conjecture. 4. Equidistribution of Special Subvarieties; Analytic Methods for the Distribution of Rational Points on Algebraic Varieties; D. R. Heath-Brown.- 1. Introduction to the Hardy—Littlewood Circle Method. 2. Major Arcs and Local Factors in the Hardy—Littlewood Circle Method. 3. The Minor Arcs in the Hardy—Littlewood Circle Method.4. Combining Analytic and Geometric Methods. Universal Torsors over Del Pezzo Surfaces and Rational Points; U. Derenthal and Y.Tschinkel.- 1. Introduction. 2. Geometric Background. 3. Manin’s Conjecture. 4. The Universal Torsor. 5. Summations.6. Completion of the Proof. 7. Equations of Universal Torsors.- An Introduction to the Linnik Problems; W. Duke.- 1. Introduction.2. The Linnik Problems. 3. Holomorphic Modular Forms of Half-Integral Weight. 4. Theta Series With Harmonic Polynomials. 5. Linnik Problem for Squares and the Shimura Lift. 6. Nontrivial Estimates for Fourier Coefficients.7. Salié Sums. 8. An Estimate of Iwaniec. 9. Theorems of Gauss and Siegel . 10. The Nonholomorphic Case (Duke, 1988). 11. Transition to Subconvexity Bounds for L-Functions. 12. An Application to Traces of Singular Moduli. Distribution Modulo One and Ratner’s Theorem; J. Marklof.- 1. Introduction. 2. Randomness of Point Sequences mod 1. 3. ma mod One 4. vma mod One.5. Ratner’s Theorem. Spectral Theory of Automorphic Forms: A Very Brief Introduction; A. Venkatesh.- 1. What Is a Homogeneous Space?. 2. Spectral Theory: Compact Case. 3. Dynamics. 4. Spectral Theory: Noncompact Case. 5. Hecke Operators. 6. Gross Omissions: The Selberg Trace Formula. Some Examples How to Use Measure Classification in Number Theory; E. Lindenstrauss.- 1. Introduction. 2. Dynamical Systems: Some Background. 3. Equidistribution of n2a mod 1. 4. Unipotent Flows and Ratner’s Theorems. 5. Entropy of Dynamical Systems: Some More Background. 6. Diagonalizable Actions and the Set of Exceptions to Littlewood’s Conjecture. 7. Applications to Quantum Unique Ergodicity.-An Introduction to Quantum Equidistribution; S.De Bièvre.- 1. Introduction. 2. A Crash Course in Classical Mechanics. 3.A Crash Course in Quantum Mechanics. 4. Two Words on Semi-Classical Analysis. 5. Quantum Mechanics on the Torus. The Arithmetic Theory of Quantum Maps; Z. Rudnick.- 1. Quantum Mechanics on the Torus. 2. Quantizing Cat Maps. 3. Quantum Ergodicity. 4. Quantum Unique Ergodicity. 5. Arithmetic QUE .

Erscheint lt. Verlag 8.4.2007
Reihe/Serie Nato Science Series II:
NATO Science Series II: Mathematics, Physics and Chemistry
NATO Science Series II: Mathematics, Physics and Chemistry
Zusatzinfo XVI, 340 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Algebraic Varieties • Calculus • Chemistry • cryptography • Mathematics • NATO • Number Theory • Physics • Prime • Prime number • Quantum Chaos • Science • Series II
ISBN-10 1-4020-5404-1 / 1402054041
ISBN-13 978-1-4020-5404-4 / 9781402054044
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich